【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點(diǎn)分別為E、F,DFAC交于點(diǎn)M,DEBC交于點(diǎn)N。

(1)求證:△ADM△BND;

(2)在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過程中:

①探究三條線段CD、CE、CF之間的數(shù)量關(guān)系,并說明理由;

②若CE=4,CF=2,求DN的長.

【答案】1)(略),(2見解析,.

【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)得到BCD=∠ACD=45°BCE=∠ACF=90°,于是得到DCE=∠DCF=135°,根據(jù)全等三角形的性質(zhì)即可的結(jié)論;

2證得CDF∽△CED,根據(jù)相似三角形的性質(zhì)得到,即CD2=CECF;

如圖,過DDGBCG,于是得到DGN=ECN=90°CG=DG,當(dāng)CE=4CF=2時(shí),求得CD=,推出CEN∽△GDN,根據(jù)相似三角形的性質(zhì)得到 =2,根據(jù)勾股定理即可得到結(jié)論.

1)證明:∵∠ACB=90°,AC=BC,AD=BD∴∠BCD=∠ACD=45°,BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在DCEDCF中,CE=CFDCE=∠DCF,CD=CD,∴△DCE≌△DCF,DE=DF;

2)解:①∵∠DCF=DCE=135°,∴∠CDF+F=180°135°=45°∵∠CDF+CDE=45°,∴∠F=CDE,∴△CDF∽△CED ,即CD2=CECF;

如圖,過DDGBCG,則DGN=ECN=90°CG=DG,當(dāng)CE=4CF=2時(shí),由CD2=CECFCD=,RtDCG中,CG=DG=CDsinDCG=×sin45°=2,∵∠ECN=DGN,ENC=DNG,∴△CEN∽△GDN, =2,GN=CG=,DN= ==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的推理過程補(bǔ)充完整,并在括號內(nèi)填上理由.

已知:B、CE三點(diǎn)在一條直線上,∠3=∠E,∠4+2180°.

試說明:∠BCF=∠E+F

解:∵∠3=∠E(已知)

EF   (內(nèi)錯(cuò)角相等,兩直線平行)

∵∠4+2180°(已知)

CD   

CD   (平行于同一條直線的兩條直線互相平行)

∴∠1=∠F,

2   

∵∠BCF=∠1+2(已知)

∴∠BCF=∠E+F(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)P是四邊形ABCD外接圓⊙O上的任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD,連接PA,PB,PC,若PA= ,求點(diǎn)A到PB和PC的距離之和AE+AF是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB=8cm,BC=16cm,AC的垂直平分線EF分別交ADBC于點(diǎn)E、F,垂足為O.

1)如圖1,連接AF、CE,判斷四邊形AFCE的形狀,并說明理由;

2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),P點(diǎn)沿著AFBA勻速運(yùn)動(dòng),Q點(diǎn)沿著CDEC勻速運(yùn)動(dòng),在運(yùn)動(dòng)過程中:

已知點(diǎn)P的速度為10cm/s,點(diǎn)Q的速度為8cm/s,運(yùn)動(dòng)時(shí)間為t秒,問當(dāng)t為何值時(shí),點(diǎn)A,C,PQ組成的四邊形為平行四邊形?

點(diǎn)P,Q的運(yùn)動(dòng)路程分別為a,b(單位:cm,ab≠0),問當(dāng)a,b滿足怎樣的關(guān)系式時(shí),點(diǎn)A,CP,Q組成的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了擴(kuò)大經(jīng)營,決定購進(jìn)6臺(tái)機(jī)器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價(jià)格和每臺(tái)機(jī)器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機(jī)器所耗資金不能超過34萬元.

價(jià)格(萬元/臺(tái))

7

5

每臺(tái)日產(chǎn)量(個(gè))

100

60

(1)按該公司要求可以有幾種購買方案?

(2)如果該公司購進(jìn)的6臺(tái)機(jī)器的日生產(chǎn)能力不能低于380個(gè),那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了“迎國慶,向祖國母親獻(xiàn)禮”,某建筑公司承建了修筑一段公路的任務(wù),指派甲、乙兩隊(duì)合作,18天可以完成,共需施工費(fèi)126000元;如果甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程,乙隊(duì)所用時(shí)間是甲隊(duì)的1.5倍,乙隊(duì)每天的施工費(fèi)比甲隊(duì)每天的施工費(fèi)少1000.

1)甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程,各需多少天?

2)為了盡快完成這項(xiàng)工程任務(wù),甲、乙兩隊(duì)通過技術(shù)革新提高了速度,同時(shí),甲隊(duì)每天的施工費(fèi)提高了,乙隊(duì)每天的施工費(fèi)提高了,已知兩隊(duì)合作12天后,由甲隊(duì)再單獨(dú)做2天就完成了這項(xiàng)工程任務(wù),且所需施工費(fèi)比計(jì)劃少了21200.

①分別求出甲、乙兩隊(duì)技術(shù)革新前每天的施工費(fèi)用;

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(40).

1)求拋物線的解析式;

2)判斷△ABC的形狀,直接寫出△ABC外接圓的圓心坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AECD于點(diǎn)F,連接DE

1)求證:△DEC≌△EDA;

2)求DF的值;

查看答案和解析>>

同步練習(xí)冊答案