【題目】如圖,已知△ABC是等邊三角形,點D,E分別在邊BC,AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫所有正確結(jié)論的序號)
【答案】①②③④
【解析】解:①正確.∵△ABC是等邊三角形,
∴AB=AC=BC,∠BAC=∠ACB=60°,
∵DE=DC,
∴△DEC是等邊三角形,
∴ED=EC=DC,∠DEC=∠AEF=60°,
∵EF=AE,
∴△AEF是等邊三角形,
∴AF=AE,∠EAF=60°,
在△ABE和△ACF中,
,
∴△ABE≌△ACF,故①正確.
②正確.∵∠ABC=∠FDC,
∴AB∥DF,
∵∠EAF=∠ACB=60°,
∴AB∥AF,
∴四邊形ABDF是平行四邊形,
∴DF=AB=BC,故②正確.
③正確.∵△ABE≌△ACF,
∴BE=CF,S△ABE=S△AFC,
在△BCE和△FDC中,
,
∴△BCE≌△FDC,
∴S△BCE=S△FDC,
∴S△ABC=S△ABE+S△BCE=S△ACF+S△DCF,故③正確.
④正確.∵△BCE≌△FDC,
∴∠DBE=∠EFG,∵∠BED=∠FEG,
∴△BDE∽△FGE,
∴ = ,
∴ = ,
∵BD=2DC,DC=DE,
∴ =2,
∴FG=2EG.故④正確.
【考點精析】本題主要考查了等邊三角形的性質(zhì)和平行四邊形的判定與性質(zhì)的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B
(4,﹣2)兩點,與x軸交于C點,過A作AD⊥x軸于D.
(1)求這兩個函數(shù)的解析式:
(2)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長;
(2)求完成這項工程需要土石多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,且BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,速度為2cm/秒;同時直線PQ由點B出發(fā),沿BA的方向勻速運動,速度為1cm/秒,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t<5).
(1)當t為何值時,四邊形PQCM是平行四邊形?
(2)設四邊形PQCM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有筐白菜,以每筐千克為標準,超過或不足的分別用正、負來表示,記錄如下:
與標準質(zhì)量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標準質(zhì)量比較,筐白菜總計超過或不足多少千克?
(2)若白菜每千克售價元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y= (k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com