已知二次函數(shù)y=x2-2x-3
(1)填寫(xiě)表格,并在所給的直角坐標(biāo)系中描點(diǎn),畫(huà)出該函數(shù)的圖象.
x
y=x2-2x-3
(2)填空:
①該拋物線的頂點(diǎn)坐標(biāo)是______
②該拋物線與x軸的交點(diǎn)坐標(biāo)是______
③當(dāng)x______時(shí),y隨x的增大而增大;
④若y>0,則x的取值范圍是______;
⑤若將拋物線y=x2-2x-3向______平移______個(gè)單位,再向______平移______個(gè)單位后可得到拋物線y=x2

解:(1)
x-1 0 1 2 3
y=x2-2x-30-3-4-30
畫(huà)圖如右圖所示:

(2)填空:
①該拋物線的頂點(diǎn)坐標(biāo)是:(1,-4);
②該拋物線與x軸的交點(diǎn)坐標(biāo)是 (-1,0)(3,0);
③當(dāng)x>1時(shí),y隨x的增大而增大;
④若y>0,則x的取值范圍是:x<-1或x>3;
⑤若將拋物線y=x2-2x-3向 左平移 1個(gè)單位,再向 上平移 4個(gè)單位后可得到拋物線y=x2
分析:(1)拋物線的頂點(diǎn)坐標(biāo)為(1,-4),自變量以1為中心,各取比1大的2個(gè)數(shù),比2小的2個(gè)數(shù),求得其函數(shù)值填表,進(jìn)而描點(diǎn),連線即可;
(2)①?gòu)膱D象上找拋物線的頂點(diǎn)坐標(biāo);
②從圖象上找到相應(yīng)的與x軸的交點(diǎn)即可;
③看在對(duì)稱(chēng)軸的哪一側(cè),y隨x的增大而減小即可;
④找到x軸上方的函數(shù)圖象所對(duì)應(yīng)的自變量的取值即可;
⑤看頂點(diǎn)(1,-4)是怎么平移到(0,0)的即可.
點(diǎn)評(píng):此題主要考查了二次函數(shù)圖象,關(guān)鍵是正確畫(huà)出此函數(shù)圖象,根據(jù)圖象可以直接看出所要求的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時(shí),拋物線總與x軸有兩個(gè)交點(diǎn);
(2)求當(dāng)m取何值時(shí),拋物線與x軸兩交點(diǎn)之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個(gè)交點(diǎn)分別為A(-1,0),B(3,4),當(dāng)y1>y2時(shí),自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫(xiě)出當(dāng)y>0時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案