【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D60°.

(1)求證:AE是⊙O的切線;

(2) 連接OC,當(dāng)BC3時,求劣弧AC的長和扇形B0C的面積.

【答案】(1)見詳解;(2)劣弧AC的長為2π;和扇形BOC的面積為;

【解析】

1)因為AB是圓O直徑,根據(jù)半圓(或直徑)所對的圓周角是直角得出∠ACB=90°,又因為∠D=60°,所以其在同一個圓中,同弧對應(yīng)的圓周角相等,即∠B=60°,所以∠CAB=30°,從而證明∠BAE90°,所以AE是圓O的切線

2)連接OC,由∠D=60°得到劣弧AC對應(yīng)的圓心角為120°,再得出三角形BOC是等邊三角形從而知道半徑長,再利用弧長公式(其中為n°的圓心角所對弧的長,R為圓的半徑)求出弧長即可;先求出劣弧BC對應(yīng)的圓心角度數(shù),然后利用扇形面積公式(,其中為n°的圓心角所對扇形的面積,R為圓的半徑)求解即可

1)∵AB是圓O直徑

∴∠ACB=90°

又∵∠D=60°

∴∠B=60°

∴∠CAB=30°

又∵∠EAC60°

∴∠EAC+∠CAB=90°

∴∠BAE=90°

AE是⊙O的切線

(2)如圖

∵∠D=60°

∴∠AOC=120°

∴∠BOC=60°

又∵OB=OC

∴△BOC為等邊三角形

∴OC=3

∴劣弧AC的長==

∵∠BOC=60°

∴扇形BOC的面積==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=-1與函數(shù)y=kx交于點A(2,b)、B(-3,m)兩點(點A在第一象限),

(1)求b,m,k的值;

(2)函數(shù)y=-1與x軸交于點C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點EBC邊上的中點,過AAFCD,AEEF.

1)若∠B=60°,AE平分∠BAF,DF=4.AE的長.

2)求證:AB+CF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到ABC,MBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1yax2+k的頂點A0,﹣2),且過點(2,0),點B的坐標(biāo)為(1,0),直線AB交拋物線C1于另一點C

1)拋物線的解析式為   

2)求點C的坐標(biāo):

3)如圖2,將拋物線C1向下平移mm0)個單位得到拋物線C,且拋物線C的頂點為P,交x軸負(fù)半軸于點M,交射線BC于點NNQx軸于點Q,當(dāng)NP平分∠MNQ時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:

如:解方程.

解:原方程可變形,得

.

,

直接開平方并整理,得,.

我們稱曉東這種解法為“平均數(shù)法”.

(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.

.

,

.

直接開平方并整理,得,.

上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.

(2)請用“平均數(shù)法”解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠B120°.點P是對角線AC上一點(不與端點A重合),則線段AP+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點的坐標(biāo)分別為B0,3)和C0,﹣),點Ax軸正半軸上,且滿足∠BAO30°

1)過點CCEAB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將OFG沿FG翻折使點O落在平面內(nèi)的點O處,連接OC,求線段OF的長以及線段OC的最小值;

2)如圖2,點D的坐標(biāo)為D(﹣1,0),將BDC繞點B順時針旋轉(zhuǎn),使得BCAB于點B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點MN為平面內(nèi)任意一點,當(dāng)以BD、M、N為頂點的四邊形是菱形時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地物線點、均不為0)的頂點為,與軸的交點為,我們稱以為頂點,對稱軸是軸且過點的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.

1)求拋物線的衍生拋物線和衍生直線的解析式;

2)若一條拋物線的衍生拋物線和衍生直線分別是,求這條拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案