精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的邊長為4,∠B120°.點P是對角線AC上一點(不與端點A重合),則線段AP+PD的最小值為_____

【答案】2

【解析】

PEAB于點E,DFAB于點F,由菱形的性質可得∠DAC=CAB,AB=BC,由等腰三角形的性質和直角三角形的性質可得PE=AP,AF=AD=2DF=AF=2,可得AP+PD=PE+DP,則點D,點P,點E三點共線且垂直AB時,PE+DP的值最小,即可求線段AP+PD的最小值.

解:如圖,作PEAB于點E,DFAB于點F

∵四邊形ABCD是菱形
∴∠DAC=CAB,AB=BC,且∠B=120°
∴∠CAB=30°
PE=AP,∠DAF=60°
∴∠FDA=30°,且DFAB
AF=AD=2,DF=AF=2
AP+PD=PE+DP
∴當點D,點P,點E三點共線且垂直AB時,PE+DP的值最小,最小值為DF,
∴線段AP+PD的最小值為2
故答案為:2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,將沿弦BC所在直線折疊,折疊后的弧與直徑AB相交于點D,連接CD.

(1)若點D恰好與點O重合,則∠ABC=   °;

(2)延長CD交⊙O于點M,連接BM.猜想∠ABC與∠ABM的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四張質地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機抽取一張卡片,恰好得到數字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D60°.

(1)求證:AE是⊙O的切線;

(2) 連接OC,BC3時,求劣弧AC的長和扇形B0C的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙M經過O點,并且與x軸、y軸分別交于AB兩點,線段OAOBOAOB)的長是方程的兩根.

1)求線段OA、OB的長;

2)若點C在劣弧OA,連結BCOAD,當OC2CD·CB時,求點C的坐標;

3)若點C在優(yōu)弧OA上,作直線BCx軸于D,是否存在COBCDO相似,若存在,求出點C的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一元二次方程中,有著名的韋達定理:對于一元二次方程ax2+bx+c0a≠0),如果方程有兩個實數根x1,x2,那么x1+x2=﹣,x1x2(說明:定理成立的條件≥0).比如方程2x23x10中,17,所以該方程有兩個不等的實數解.記方程的兩根為x1,x2,那么x1+x2,x1x2=﹣,請根據閱讀材料解答下列各題:

1)已知方程x23x20的兩根為x1x2,且x1x2,求下列各式的值:

x12+x22;②

2)已知x1,x2是一元二次方程4kx24kx+k+10的兩個實數根.

①是否存在實數k,使(2x1x2)(x12x2)=﹣成立?若存在,求出k的值;若不存在,請說明理由.

②求使的值為整數的實數k的整數值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場在促銷活動中規(guī)定,顧客每消費100元就能獲得一次抽獎機會.為了活躍氣氛,設計了兩個抽獎方案:

方案一:轉動轉盤A一次,轉出紅色可領取一份獎品;

方案二:轉動轉盤B兩次,兩次都轉出紅色可領取一份獎品.(兩個轉盤都被平均分成3份)如果你獲得一次抽獎機會,你會選擇哪個方案?請用相關的數學知識說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以半圓中的一條弦BC(非直徑)為對稱軸將弧BC折疊后與直徑AB交于點D,若,且AB10,則CB的長為_____

查看答案和解析>>

同步練習冊答案