如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.

(1)求m的值;
(2)求點B的坐標;

(1)3;(2)B(-1,0).

解析試題分析:(1)由二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),利用待定系數(shù)法將點A的坐標代入函數(shù)解析式即可求得m的值;
(2)根據(jù)(1)求得二次函數(shù)的解析式,然后將y=0代入函數(shù)解析式,即可求得點B的坐標.
試題解析:(1)∵二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),
∴-9+2×3+m=0,
解得:m=3;
(2)∵二次函數(shù)的解析式為:y=-x2+2x+3,
∴當y=0時,-x2+2x+3=0,
解得:x=3或x=-1,
∴B(-1,0).
考點: 二次函數(shù)綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在氣候對人類生存壓力日趨加大的今天,發(fā)展低碳經濟,全面實現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術革新,節(jié)能減排,經分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應獲得的利潤也有所提高,且相應獲得的利潤p(萬元)與月份x(月)的函數(shù)關系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應獲得的利潤在上一個月的基礎上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設P點橫坐標為t,線段PQ的長為d,求出d與t之間的函數(shù)關系式,并寫出相應的自變量t的取值范圍;
(3)在(2)的條件下,當點P在線段BC上時,設PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=x2-2x+c的頂點A在直線l:y=x-5上.

(1)求拋物線頂點A的坐標;
(2)設拋物線與y軸交于點B,與x軸交于點C、D(C點在D點的左側),試判斷△ABD的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

平面直角坐標中,對稱軸平行于y軸的拋物線經過原點O,其頂點坐標為(3,);Rt△ABC的直角邊BC在x軸上,直角頂點C的坐標為(,0),且BC=5,AC=3(如圖1).

圖1                             圖2
(1)求出該拋物線的解析式;
(2)將Rt△ABC沿x軸向右平移,當點A落在(1)中所求拋物線上時Rt△ABC停止移動.D(0,4)為y軸上一點,設點B的橫坐標為m,△DAB的面積為s.
①分別求出點B位于原點左側、右側(含原點O)時,s與m之間的函數(shù)關系式,并寫出相應自變量m的取值范圍(可在圖1、圖2中畫出探求);
②當點B位于原點左側時,是否存在實數(shù)m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點, A點在原點的左側,B點的坐標為(,),與y軸交于C(,)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式.
(2)連結PO、PC,并把△POC沿CO翻折,得到四邊形POP’C,那么是否存在點P,使四邊形POP’C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,拋物線過點,且與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.點D的坐標為,連接CA,CB,CD.

(1)求證:;
(2)是第一象限內拋物線上的一個動點,連接DP交BC于點E.
①當△BDE是等腰三角形時,直接寫出點E的坐標;
②連接CP,當△CDP的面積最大時,求點E的坐標.

查看答案和解析>>

同步練習冊答案