如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對稱軸向下以每秒1個(gè)單位長度的速度勻速運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.

【答案】分析:(1)先由直線AB的解析式為y=x+3,求出它與x軸的交點(diǎn)A、與y軸的交點(diǎn)B的坐標(biāo),再將A、B兩點(diǎn)的坐標(biāo)代入y=-x2+bx+c,運(yùn)用待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,-m2-2m+3),運(yùn)用配方法求出拋物線的對稱軸及頂點(diǎn)D的坐標(biāo),再設(shè)拋物線的對稱軸與x軸交于點(diǎn)G,連接FG,根據(jù)S△AEF=S△AEG+S△AFG-S△EFG=3,列出關(guān)于m的方程,解方程求出m的值,進(jìn)而得出點(diǎn)F的坐標(biāo);
(3)設(shè)P點(diǎn)坐標(biāo)為(-1,n).先由B、C兩點(diǎn)坐標(biāo),運(yùn)用勾股定理求出BC2=10,再分三種情況進(jìn)行討論:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,據(jù)此列出關(guān)于n的方程,求出n的值,再計(jì)算出PD的長度,然后根據(jù)時(shí)間=路程÷速度,即可求出此時(shí)對應(yīng)的t值;②∠BPC=90°,同①可求出對應(yīng)的t值;③∠BCP=90°,同①可求出對應(yīng)的t值.
解答:解:(1)∵y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴當(dāng)y=0時(shí),x=-3,即A點(diǎn)坐標(biāo)為(-3,0),
當(dāng)x=0時(shí),y=3,即B點(diǎn)坐標(biāo)為(0,3),
將A(-3,0),B(0,3)代入y=-x2+bx+c,
,
解得,
∴拋物線的解析式為y=-x2-2x+3;

(2)如圖1,設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,-m2-2m+3),則m<0,-m2-2m+3<0.
∵y=-x2-2x+3=-(x+1)2+4,
∴對稱軸為直線x=-1,頂點(diǎn)D的坐標(biāo)為(-1,4),
設(shè)拋物線的對稱軸與x軸交于點(diǎn)G,連接FG,則G(-1,0),AG=2.
∵直線AB的解析式為y=x+3,
∴當(dāng)x=-1時(shí),y=-1+3=2,
∴E點(diǎn)坐標(biāo)為(-1,2).
∵S△AEF=S△AEG+S△AFG-S△EFG=×2×2+×2×(m2+2m-3)-×2×(-1-m)=m2+3m,
∴以A、E、F為頂點(diǎn)的三角形面積為3時(shí),m2+3m=3,
解得m1=,m2=(舍去),
當(dāng)m=時(shí),-m2-2m+3=-m2-3m+m+3=-3+m+3=m=,
∴點(diǎn)F的坐標(biāo)為();

(3)設(shè)P點(diǎn)坐標(biāo)為(-1,n).
∵B(0,3),C(1,0),
∴BC2=12+32=10.
分三種情況:
①如圖2,如果∠PBC=90°,那么PB2+BC2=PC2,
即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,
化簡整理得6n=16,解得n=
∴P點(diǎn)坐標(biāo)為(-1,),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4-=,
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t1=;
②如圖3,如果∠BPC=90°,那么PB2+PC2=BC2,
即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,
化簡整理得n2-3n+2=0,解得n=2或1,
∴P點(diǎn)坐標(biāo)為(-1,2)或(-1,1),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4-2=2或PD=4-1=3,
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t2=2,t3=3;
③如圖4,如果∠BCP=90°,那么BC2+PC2=PB2,
即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,
化簡整理得6n=-4,解得n=-,
∴P點(diǎn)坐標(biāo)為(-1,-),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4+=,
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t4=;
綜上可知,當(dāng)t為秒或2秒或3秒或秒時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形.
點(diǎn)評:本題考查了二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有運(yùn)用待定系數(shù)法求拋物線的解析式,函數(shù)圖象上點(diǎn)的坐標(biāo)特征,拋物線的頂點(diǎn)坐標(biāo)和三角形的面積求法,直角三角形的性質(zhì),勾股定理.綜合性較強(qiáng),難度適中.(2)中將△AEF的面積表示成S△AEG+S△AFG-S△EFG,是解題的關(guān)鍵;(3)中由于沒有明確哪一個(gè)角是直角,所以每一個(gè)點(diǎn)都可能是直角頂點(diǎn),進(jìn)行分類討論是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,已知直線:y=
3
3
x+
3
與直角坐標(biāo)系xOy的x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)M為x軸正半軸上一點(diǎn),以點(diǎn)M為圓心的⊙M與直線AB相切于B點(diǎn),交x軸于C、D兩點(diǎn),與y軸交于另一點(diǎn)E.
(1)求圓心M的坐標(biāo);
(2)如圖2,連接BM延長交⊙M于F,點(diǎn)N為
CF
上任一點(diǎn),連DN交BF于Q,連FN并延長交x軸于點(diǎn)P.則CP與MQ有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖3,連接BM延長交⊙M于F,點(diǎn)N為
CF
上一動點(diǎn),NH⊥x軸于H,NG⊥BF于G,連接GH,當(dāng)N點(diǎn)運(yùn)動時(shí),下列兩個(gè)結(jié)論:①NG+NH為定值;②GH的長度不變;其中只有一個(gè)是正確的,請你選擇正確的結(jié)論加以證明,并求出其值?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知直線l的解析式為y=
43
x+4
,它與x軸、y軸分別相交于A、B兩點(diǎn).點(diǎn)C從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位的速度向點(diǎn)A勻速運(yùn)動;點(diǎn)D從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動,點(diǎn)C、D同時(shí)出發(fā),當(dāng)點(diǎn)C到達(dá)點(diǎn)A時(shí)同時(shí)停止運(yùn)動.伴隨著C、D的運(yùn)動,EF始終保持垂直平分CD,垂足為E,且EF交折線AB-BO-AO于點(diǎn)F.
(1)直接寫出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)C、D的運(yùn)動時(shí)間是t秒(t>0).
①用含t的代數(shù)式分別表示線段AD和AC的長度;
②在點(diǎn)F運(yùn)動的過程中,四邊形BDEF能否成為直角梯形?若能,求t的值;若不能,請說明理由.(可利用備用圖解題)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知直線y=kx與拋物線y=-
4
27
x2+
22
3
交于點(diǎn)A(3,6).
(1)求k的值;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動點(diǎn),過點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說明理由;
(3)如圖2,若點(diǎn)B為拋物線上對稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點(diǎn),求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(-2,-1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點(diǎn)D在x軸上運(yùn)動,當(dāng)滿足DM=DN時(shí),請求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

完成下面證明:

(1)如圖1,已知直線b∥c,a⊥c,求證:a⊥b
證明:∵a⊥c  (已知)
∴∠1=
∠2
∠2
(垂直定義)
∵b∥c (已知)
∴∠1=∠2  (
兩直線平行,同位角相等
兩直線平行,同位角相等

∴∠2=∠1=90° (
等量代換
等量代換

∴a⊥b      (
垂直的定義
垂直的定義

(2)如圖2:AB∥CD,∠B+∠D=180°,求證:CB∥DE
證明:∵AB∥CD (已知)
∴∠B=
∠C
∠C
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (
等量代換
等量代換

∴CB∥DE   (
同旁內(nèi)角互補(bǔ),兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行

查看答案和解析>>

同步練習(xí)冊答案