【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),連接AE,以AD為直徑的⊙O交AE于點(diǎn)F,連接CF.

(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點(diǎn),求AB的長.

【答案】
(1)

證明:如圖所示:連接OF、OC,

∵四邊形ABCD是矩形,

∴AD∥BC,AD=BC,∠ADC=90°,

∵E為BC邊中點(diǎn),AO=DO,

∴AO=AD,EC=BC,

∴AO=EC,AO∥EC,

∴四邊形OAEC是平行四邊形,

∴AE∥OC,

∴∠DOC=∠OAF,∠FOC=∠OFA,

∵OA=OF,

∴∠OAF=∠OFA,

∴∠DOC=∠FOC,

∵在△ODC和△OFC中

,

∴△ODC≌△OFC(SAS),

∴∠OFC=∠ODC=90°,

∴OF⊥CF,

∴CF與⊙O相切;


(2)

解:如圖所示:連接DE,

∵AO=DO,AF=EF,AD=2,

∴DE=20F=2,

∵E是BC的中點(diǎn),

∴EC=1,

在Rt△DCE中,由勾股定理得:

DC=,

∴AB=CD=


【解析】(1)利用平行四邊形的判定方法得出四邊形OAEC是平行四邊形,進(jìn)而得出△ODC≌△OFC(SAS),求出OF⊥CF,進(jìn)而得出答案;
(2)利用勾股定理得出DC的長,即可得出AB的長,
【考點(diǎn)精析】本題主要考查了勾股定理的概念和矩形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】開學(xué)初,小明到文具批發(fā)部一次性購買某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價(jià)y(元/本)與購買數(shù)量x(本)之間的函數(shù)關(guān)系如圖所示.

(1)圖中線段AB所表示的實(shí)際意義是;
(2)請直接寫出y與x之間的函數(shù)關(guān)系式;
(3)已知該文具批發(fā)部這種筆記本的進(jìn)價(jià)是3元/本,若小明購買此種筆記本超過10本但不超過20本,那么小明購買多少本時(shí),該文具批發(fā)部在這次買賣中所獲的利潤W(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動,并準(zhǔn)備購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問題:

(1)本次調(diào)查共抽查了名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= , n=
(2)已知該校共有960名學(xué)生,請估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽同學(xué)為1男1女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,在AB、BC、CD、DA邊上分別取點(diǎn)A1、B1、C1、D1 , 使AA1=BB1=CC1=DD1=a,在邊A1B1、B1C1、C1D1、D1A1上分別取點(diǎn)A2、B2、C2、D2 , 使A1A2=B1B2=C1C2=D1D2=A1B2 , ….依次規(guī)律繼續(xù)下去,則正方形AnBnCnDn的面積為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).

(1)請畫出△A1B1C1 , 使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2 , 并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.

(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請證明;若不成立,請說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長為2,請直接寫出線段EF的長;
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線段OB上移動(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=mBP時(shí),請直接寫出PE與PF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R. (I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c過點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).

(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對稱軸的對稱點(diǎn)為E點(diǎn),聯(lián)結(jié)BC,BE,求∠CBE的正切值;
(3)點(diǎn)M是拋物線對稱軸上一點(diǎn),且△DMB和△BCE相似,求點(diǎn)M坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案