【題目】某商店如果將進(jìn)貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進(jìn)貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.

1)要使每天獲得利潤700元,請你幫忙確定售價;

2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.

【答案】113元或15元(214元,最大利潤為720

【解析】

解:(1)設(shè)每件商品提高x元,

則每件利潤為(10+x-8=x+2)元,

每天銷售量為(200-20x)件,

依題意,得:

x+2)(200-20x=700

整理得:x2-8x+15=0

解得:x1=3x2=5

把售價定為每件13元或15元能使每天利潤達(dá)到700元;

答:把售價定為每件13元或15元能使每天利潤達(dá)到700元.

2)設(shè)應(yīng)將售價定為x元時,才能使得所賺的利潤最大為y元,

根據(jù)題意得:

y=x-8)(200-

=-20x2+560x-3200,

=-20x2-28x-3200

=-20x2-28x+142-3200+20×142

=-20x-142+720,

∴x=14時,利潤最大y=720

答:應(yīng)將售價提為14元時,才能使所賺利潤最大,最大利潤為720元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文美書店決定用不多于20000元購進(jìn)甲乙兩種圖書共1200本進(jìn)行銷售.甲、乙兩種圖書的進(jìn)價分別為每本20元、14元,甲種圖書每本的售價是乙種圖書每本售價的1.4倍,若用1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10.

(1)甲乙兩種圖書的售價分別為每本多少元?

(2)書店為了讓利讀者,決定甲種圖書售價每本降低3元,乙種圖書售價每本降低2元,問書店應(yīng)如何進(jìn)貨才能獲得最大利潤?(購進(jìn)的兩種圖書全部銷售完.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形ABCAB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)DDFAC,垂足為F,過點(diǎn)FFGAB,垂足為G,連接GD

1)求證:DF與⊙O的位置關(guān)系并證明;

2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(3,0),將線段AB向上平移2個單位,再向右平移1個單位,得到線段DC,點(diǎn)A、B的對應(yīng)點(diǎn)分別是D、C,連接AD、BC.

(1)直接寫出點(diǎn)C,D的坐標(biāo);

(2)求四邊形ABCD的面積;

(3)點(diǎn)P為線段BC上任意一點(diǎn)(與點(diǎn)B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項(xiàng),把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來就是 類似地,2所示的算籌圖我們可以用方程組形式表述為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為 1,CDAB 于點(diǎn) D,E 為射線 CD 上一點(diǎn),以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Aa,0),Bb0),C(﹣12),且

1)求ab的值;

2y軸上是否存在一點(diǎn)M,使COM的面積是ABC的面積的一半,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 y=ax2+bx﹣ x 軸交于 A(1,0)、B(6,0)兩點(diǎn),D y 軸上一點(diǎn),連接 DA,延長 DA 交拋物線于點(diǎn) E.

(1)求此拋物線的解析式;

(2) E 點(diǎn)在第一象限,過點(diǎn) E EFx 軸于點(diǎn) F,ADO AEF 的面積比為=,求出點(diǎn) E 的坐標(biāo);

(3) D y 軸上的動點(diǎn), D 點(diǎn)作與 x 軸平行的直線交拋物線于 M、N 兩點(diǎn), 是否存在點(diǎn) D,使 DA2=DMDN?若存在,請求出點(diǎn) D 的坐標(biāo);若不存在,請說 明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一棵樹CD10m高處的B點(diǎn)有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?

查看答案和解析>>

同步練習(xí)冊答案