【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB,BC于點(diǎn)E,F,連接EF(如圖).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖),則PC的長(zhǎng)為 ;
(2)將直角尺從如圖中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中,從開始到停止,線段EF的中點(diǎn)所經(jīng)過(guò)的路徑(線段)長(zhǎng)為 .
【答案】(1)2;(2)
【解析】
(1)如圖2,先利用勾股定理計(jì)算出PB=2,再證明△APB∽△DCP,然后利用相似比可計(jì)算出PC;
(2)設(shè)線段EF的中點(diǎn)為O,連接OP,OB,如圖1,利用直角三角形斜邊上的中線性質(zhì)得OP=OB=EF,則利用線段垂直平分線定理的逆定理可得O點(diǎn)在線段BP的垂直平分線上,再確定旋轉(zhuǎn)開始和停止時(shí)EF的中點(diǎn)位置,然后根據(jù)三角形中位線性質(zhì)確定線段EF的中點(diǎn)所經(jīng)過(guò)的路徑(線段)長(zhǎng).
(1)如圖2,
在矩形ABCD中,∠A=∠D=90°,
∵AP=1,AB=,
∴PB==2,
∵∠ABP+∠APB=90°,∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴AP:CD=PB:CP,即1:=2:PC,
∴PC=2,
(2)設(shè)線段EF的中點(diǎn)為O,連接OP,OB,如圖1,
在Rt△EPF中,OP=EF,
在Rt△EBF中,OB=EF,
∴OP=OB,
∴O點(diǎn)在線段BP的垂直平分線上,
如圖2,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F與點(diǎn)C重合時(shí),EF的中點(diǎn)為BC的中點(diǎn)O,
當(dāng)點(diǎn)E與點(diǎn),A重合時(shí),EF的中點(diǎn)為PB的中點(diǎn)O,
∴OO′為△PBC的中位線,
∴OO′=PC=,
∴線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①在直角三角形ABC中,已知兩邊長(zhǎng)為3和4,則第三邊長(zhǎng)為5;
②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:,則這個(gè)三角形是直角三角形.
其中,正確命題的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為(3a+b)米、寬為(2a+b)米的長(zhǎng)方形地塊,中間是邊長(zhǎng)為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在完成第10章的學(xué)習(xí)后,遇到了一些問題,請(qǐng)你幫助他.
(1)圖1中,當(dāng),試說(shuō)明.
(2)圖2中,若,則嗎?請(qǐng)說(shuō)明理由.
(3)圖3中,,若,,,,則______(直接寫出結(jié)果,用含x,y,z的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AB⊥BC,DC⊥BC,AB=4,CD=2,BC=8,P是BC上的一個(gè)動(dòng)點(diǎn),設(shè)BP=x.
(1)用關(guān)于x的代數(shù)式表示PA+PD;
(2)求出PA+PD的最小值;
(3)仿(2)的做法,構(gòu)造圖形,求的最小值;
(4)直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,點(diǎn)P為線段AD上的一個(gè)動(dòng)點(diǎn),PE⊥AD交BC的延長(zhǎng)線于點(diǎn)E.
(1)若∠B=35°,∠ACB=85°,求∠E得度數(shù).
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標(biāo)系中的圖象如圖所示,A點(diǎn)的坐標(biāo)為(-2,0),則下列結(jié)論中,正確的是( )
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿x軸的負(fù)方向運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿y軸的正方向運(yùn)動(dòng).
(1)若∣x+2y-5∣+∣2x-y∣=0,試分別求出1秒鐘后,A、B兩點(diǎn)的坐標(biāo).
(2)設(shè)∠BAO的鄰補(bǔ)角和∠ABO的鄰補(bǔ)角的平分線相交于點(diǎn)P,問:點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠P的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
(3)如圖,延長(zhǎng)BA至E,在∠ABO的內(nèi)部作射線BF交x軸于點(diǎn)C,若∠EAC、∠FCA、∠ABC的平分線相交于點(diǎn)G,過(guò)點(diǎn)G作BE的垂線,垂足為H,試問∠AGH和∠BGC的大小關(guān)系如何?
請(qǐng)寫出你的結(jié)論并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com