精英家教網(wǎng)已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負半軸于點D,弧OBM與弧OAM關于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當m=4時,
①填空:B的坐標為
 
,C的坐標為
 
,D的坐標為
 
;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關系式和寫出點E的坐標;
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.
分析:(1)①可連接OP,PM,設AC與OM交于N,那么在直角三角形OPN中,OP=5,ON=m=4.因此PN=3,AN=BN=2,CN=PC+PN=8,因此A,B,C的坐標分別為(4,2),(4,-2),(4,-8).同理過P作OD的垂線,根據(jù)垂徑定理即可得出OD=2PN=6,因此D點的坐標為(0,-6).
②可用頂點式二次函數(shù)通式來設拋物線的解析式,然后將D點的坐標代入即可求出拋物線的解析式.根據(jù)圓和拋物線的對稱性可知:E點和D點關于拋物線的對稱軸x=4對稱,因此根據(jù)D的坐標即可求出E點的坐標.
③可用待定系數(shù)法求出直線AD的解析式,然后聯(lián)立拋物線的解析式即可判斷出直線AD與拋物線是否有另外的交點.
(2)如果以B、C、D、E為頂點的四邊形組成菱形,那么這個四邊形的對角線互相垂直平分,如果設BC,DE的交點為F,那么BF=CF,可用A點的縱坐標即AN的長表示出BF和CF由此可求出A點的縱坐標,進而可在直角三角形OAN中用勾股定理求出m的值.
解答:精英家教網(wǎng)解:(1)①B(4,-2)C(4,-8)D(0,-6)
②設拋物線的解析式為y=a(x-4)2-2,已知拋物線過D點,
因此-6=a(x-4)2-2,
解得a=-
1
4

拋物線的函數(shù)關系式為:y=-
1
4
(x-4)2-2.
根據(jù)對稱可知:E(8,-6)
③直線AD:y=2x-6,
把y=2x-6代入y=-
1
4
(x-4)2-2,
整理得:x2=0,得x1=x2=0
∴除D點外,直線AD與②中的拋物線無其它公共點.

(2)設A(m,h),則B的坐標為(m,-h),C的坐標為(m,h-10).
精英家教網(wǎng)假設以B、C、D、E為頂點的四邊形組成菱形,則DE與BC互相垂直平分,
設DE與BC相交于點F,
∵OM=DE,OM∥DE,AC⊥OM,
∴CF=
1
2
AB,即BF=CF=
1
2
AB.
∴10-3h=h,
即h=
5
2

∴AB=5
∴B、P兩點重合
∴m=
OP2-h2
=
52-(
5
2
)
2
=
5
2
3
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、垂徑定理、勾股定理、菱形的性質等重要知識點,綜合性強,考查學生數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

探索研究
已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負半軸于點D,弧OBM與⊙P的弧OAM關于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.點A到x軸的距離為h,以B為頂點且過D的拋物線交⊙P于點E.
(1)填空:B的坐標為
(m,-h)
(m,-h)
,C的坐標為
(m,h-10)
(m,h-10)
,D的坐標為
(0,2h-10)
(0,2h-10)
;(可含m、h)
(2)當m=4時,
①求此拋物線的函數(shù)關系式并寫出點E的坐標;
②點Q在y軸上,且S△CEQ=S△CEP,求Q點坐標.
(3)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負半軸于點D,弧OBM與弧OAM關于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當m=4時,
①填空:B的坐標為______,C的坐標為______,D的坐標為______;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關系式和寫出點E的坐標;
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年江蘇省揚州中學教育集團九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負半軸于點D,弧OBM與弧OAM關于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當m=4時,
①填空:B的坐標為______,C的坐標為______,D的坐標為______;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關系式和寫出點E的坐標;
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省鎮(zhèn)江市中考數(shù)學模擬卷(解析版) 題型:解答題

已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負半軸于點D,弧OBM與弧OAM關于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當m=4時,
①填空:B的坐標為______,C的坐標為______,D的坐標為______;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關系式和寫出點E的坐標;
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案