【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)將有關(guān)問(wèn)題補(bǔ)充完整.收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行

91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91

84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88

整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù),分析數(shù)據(jù):

分段

學(xué)校

1

1

0

0

3

7

8

兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

統(tǒng)計(jì)量

學(xué)校

平均數(shù)

中位數(shù)

眾數(shù)

方差

81.85

91

268.43

81.95

86

88

115.25

1)經(jīng)統(tǒng)計(jì),表格中的值是__________

2)得出結(jié)論

①若甲學(xué)校有600名初二學(xué)生,估計(jì)這次考試成績(jī)80分以上人數(shù)為__________

②可以推斷出__________學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:__________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

【答案】188;(2)①450甲,甲的中位數(shù)及眾數(shù)均高于乙校,說(shuō)明甲校學(xué)生的數(shù)學(xué)水平較高

【解析】

1)先整理統(tǒng)計(jì)表,得到總?cè)藬?shù)是20人,取中間兩個(gè)數(shù)的平均數(shù)即可得到m;

2)①用樣本中80分以上的人數(shù)除以樣本總?cè)藬?shù)再乘以全校的人數(shù)600即可得到答案;

②根據(jù)統(tǒng)計(jì)表分析即可得到答案,答案不唯一.

解:整理、描述數(shù)據(jù)

分段

學(xué)校

1

1

0

0

3

7

8

0

0

1

4

2

8

5

分析數(shù)據(jù)

1)經(jīng)統(tǒng)計(jì)表格,得到總?cè)藬?shù)=1+1+0+0+3+7+8=20(),

中間兩個(gè)數(shù)據(jù)都是88,

的值是88

故答案為:88;

2)①甲學(xué)校600名初二學(xué)生在這次考試成績(jī)80分以上人數(shù)為(人)

故答案為:450

②答案不唯一,理由須支撐推斷結(jié)論.

答案為:甲,甲的中位數(shù)及眾數(shù)均高于乙校,說(shuō)明甲校學(xué)生的數(shù)學(xué)水平較高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)九(1)班的學(xué)生人數(shù)為   ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中有x個(gè)黑球和y個(gè)白球,這些球除顏色外無(wú)其他差別.若從盒中隨機(jī)取一個(gè)球,它是黑球的 概率是;中再放進(jìn)1個(gè)黑球,這時(shí)取得黑球的概率變?yōu)?/span>

(1)填空:x=_____________, y=____________________;

(2)小王和小林利用x黑球和y個(gè)白球進(jìn)行摸球游戲。約定:從盒中隨機(jī)摸取一個(gè),接著從剩下的球中再隨機(jī)摸取一個(gè),若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個(gè)人獲勝的概率各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+2mx+3m2x軸相交于點(diǎn)B、C(點(diǎn)B在點(diǎn)C的左側(cè)),與y軸相交于點(diǎn)A,點(diǎn)D為拋物線的頂點(diǎn),拋物線的對(duì)稱軸交x軸于點(diǎn)E

1)如圖1,當(dāng)AO+BC7時(shí),求拋物線的解析式;

2)如圖2,點(diǎn)F是拋物線的對(duì)稱軸右側(cè)一點(diǎn),連接BFCF、DF,過(guò)點(diǎn)FFHx軸交DE于點(diǎn)H,當(dāng)∠BFC=∠DFB+BFH90°時(shí),求點(diǎn)H的縱坐標(biāo);

3)如圖3,在(1)的條件下,點(diǎn)P是拋物線上一點(diǎn),點(diǎn)P、點(diǎn)A關(guān)于直線DE對(duì)稱,點(diǎn)Q在線段AP上,過(guò)點(diǎn)PPRAP,連接BQQR,滿足QB平分∠AQR,tanQRP,點(diǎn)K在拋物線的對(duì)稱軸上且在x軸下方,當(dāng)CKBQ時(shí),求線段DK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AMBN,CBN上一點(diǎn), BD平分∠ABN且過(guò)AC的中點(diǎn)O,交AM于點(diǎn)D,DEBD,交BN于點(diǎn)E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,Bx軸上,且關(guān)于y軸對(duì)稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若SBEF=7,k1+3k2=0,則k1等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·泰安)如圖,是將拋物線平移后得到的拋物線,其對(duì)稱軸為,與軸的一個(gè)交點(diǎn)為,另一交點(diǎn)為,與軸交點(diǎn)為

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)為拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo);

(3)點(diǎn)是拋物線上一點(diǎn),點(diǎn)是一次函數(shù)的圖象上一點(diǎn),若四邊形為平行四邊形,這樣的點(diǎn)是否存在?若存在,分別求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,AC,∠ACB45°,tanB3,過(guò)點(diǎn)ABC的平行線,與過(guò)C且垂直于BC的直線交于點(diǎn)D,一個(gè)動(dòng)點(diǎn)PB出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿BC方向運(yùn)動(dòng),過(guò)點(diǎn)PPEBC,交折線BAAD于點(diǎn)E,以PE為斜邊向右作等腰直角三角形PEF,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t0).

1)當(dāng)點(diǎn)F恰好落在CD上時(shí),此時(shí)t的值為 ;

2)若PC重合時(shí)運(yùn)動(dòng)結(jié)束,在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等腰直角三角形PEF與四邊形ABCD重疊部分的面積為S,請(qǐng)求出St之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

3)如圖2,在點(diǎn)P開始運(yùn)動(dòng)時(shí),BC上另一點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度沿CB方向運(yùn)動(dòng),當(dāng)Q到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng),同時(shí)點(diǎn)P也停止運(yùn)動(dòng),過(guò)QQMBC交射線CA于點(diǎn)M,以QM為斜邊向左作等腰直角三角形QMN,若點(diǎn)P運(yùn)動(dòng)到t秒時(shí),兩個(gè)等腰直角三角形分別有一條邊恰好落在同一直線上,請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1x+bx軸、y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y2=﹣x0)的圖象交于C,D兩點(diǎn),點(diǎn)C的橫坐標(biāo)為﹣1,過(guò)點(diǎn)CCEy軸于點(diǎn)E,過(guò)點(diǎn)DDFx軸于點(diǎn)F.下列說(shuō)法正確的是( 。

A.b5

B.BCAD

C.五邊形CDFOE的面積為35

D.當(dāng)x<﹣2時(shí),y1y2

查看答案和解析>>

同步練習(xí)冊(cè)答案