【題目】如圖1,△ABC中,AC=,∠ACB=45°,tanB=3,過(guò)點(diǎn)A作BC的平行線,與過(guò)C且垂直于BC的直線交于點(diǎn)D,一個(gè)動(dòng)點(diǎn)P從B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿BC方向運(yùn)動(dòng),過(guò)點(diǎn)P作PE⊥BC,交折線BA-AD于點(diǎn)E,以PE為斜邊向右作等腰直角三角形PEF,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)點(diǎn)F恰好落在CD上時(shí),此時(shí)t的值為 ;
(2)若P與C重合時(shí)運(yùn)動(dòng)結(jié)束,在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等腰直角三角形PEF與四邊形ABCD重疊部分的面積為S,請(qǐng)求出S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖2,在點(diǎn)P開始運(yùn)動(dòng)時(shí),BC上另一點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度沿CB方向運(yùn)動(dòng),當(dāng)Q到達(dá)B點(diǎn)時(shí)停止運(yùn)動(dòng),同時(shí)點(diǎn)P也停止運(yùn)動(dòng),過(guò)Q作QM⊥BC交射線CA于點(diǎn)M,以QM為斜邊向左作等腰直角三角形QMN,若點(diǎn)P運(yùn)動(dòng)到t秒時(shí),兩個(gè)等腰直角三角形分別有一條邊恰好落在同一直線上,請(qǐng)直接寫出t的值.
【答案】(1)7.5;(2) ;(3)2、4、
【解析】
(1)當(dāng)點(diǎn)F落在CD上時(shí),如圖1所示,可知△DEF、△PCF均為等腰直角三角形,利用幾何圖形性質(zhì)求出的長(zhǎng),進(jìn)而 求出t的值;
(2)點(diǎn)P的運(yùn)動(dòng)過(guò)程,可分為三種情形,在點(diǎn)P運(yùn)動(dòng)過(guò)程中: ①當(dāng)0≤t<3時(shí),如圖2-1,利用銳角三角函數(shù)求解 的長(zhǎng),直接利用面積公式寫函數(shù)關(guān)系式,當(dāng)3≤t<時(shí),如圖2-2,利用三角函數(shù)求解 的長(zhǎng),直接利用面積公式寫函數(shù)關(guān)系式,當(dāng)≤t≤12時(shí),如圖2-3所示,利用等腰直角三角形的性質(zhì)求解的長(zhǎng)度,利用梯形面積公式寫函數(shù)關(guān)系式;
(3)點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程,滿足題意條件的有三種情形,①當(dāng)EF與NQ落在同一直線上時(shí),得△PEQ為等腰直角三角形,利用等腰三角形性質(zhì)及的長(zhǎng)列方程求解,如圖3-1所示.當(dāng)PF與MN落在同一直線上時(shí),如圖3-2所示,得△PQF為等腰直角三角形,利用等腰三角形性質(zhì)及的長(zhǎng)列方程求解,③當(dāng)PE與QM落在同一直線上時(shí),如圖3-3所示,直接利用長(zhǎng)度列方程求解即可.
解:(1)由題意可知,△ACD為等腰直角三角形,
∴AD=CD= =
如圖1,過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,
則△ACG為等腰直角三角形.
∴AG=CG==
在Rt△ABG中, tanB
∴BC=BG+CG=3+9=12.
為等腰直角三角形,
當(dāng)點(diǎn)F落在CD上時(shí),△DEF、△PCF均為等腰直角三角形,
∴DE=DF= EF,PC=CF=PF.
∵△PEF為等腰直角三角形,EF=PF,
∴PC=CF=DF=CD=,
∴BP=BC-PC=12-=
∴當(dāng)點(diǎn)F恰好落在CD上時(shí),t=s.
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中: ①當(dāng)0≤t<3時(shí),如圖2-1所示.
PE=BPtanB=3t,
S=
②當(dāng)3≤t<時(shí),如圖2-2所示.
S=
③當(dāng)≤t≤12時(shí),如圖2-3所示.
設(shè)EF、PF分別與CD交于點(diǎn)K、J,
同理可得△DEK、△PCJ均為等腰直角三角形,
∴DK=CJ=PC=12-t,
KJ=CD-DK-CJ=
∴S=(KJ+PE)PC=(2t-15+9)(12-t)=.
綜上所述,S與t之間的函數(shù)關(guān)系式為:
(3)在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中:
①當(dāng)EF與NQ落在同一直線上時(shí),如圖3-1所示.
此時(shí),△PEQ為等腰直角三角形,則PQ=PE=3t.
∴BC=BP+PQ+CQ=t+3t+2t=12, ∴t= 2 s;
②當(dāng)PF與MN落在同一直線上時(shí),如圖3-2所示.
此時(shí),△PQF為等腰直角三角形,則PQ=QF=CQ=2t.
∴BC=BP+PQ+CQ=t+2t+2t=12, ∴t=s;
③當(dāng)PE與QM落在同一直線上時(shí),如圖3-3所示.
∴BC=BP+CQ=t+2t=12, ∴t=4 s.
綜上所述,滿足條件的t的值為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ,給出如下結(jié)論:①;②;③;④,其中正確結(jié)論是______填寫序號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)將有關(guān)問(wèn)題補(bǔ)充完整.收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行
甲 91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91
乙 84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù),分析數(shù)據(jù):
分段 學(xué)校 | |||||||
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計(jì)量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 91 | 268.43 | |
乙 | 81.95 | 86 | 88 | 115.25 |
(1)經(jīng)統(tǒng)計(jì),表格中的值是__________.
(2)得出結(jié)論
①若甲學(xué)校有600名初二學(xué)生,估計(jì)這次考試成績(jī)80分以上人數(shù)為__________.
②可以推斷出__________學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:__________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控工作,某市為了盡快完成100萬(wàn)只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬(wàn)只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.問(wèn)至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機(jī)對(duì)部分游客進(jìn)行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表.
根據(jù)圖表信息,解答下列問(wèn)題:
(1)本次調(diào)查的總?cè)藬?shù)為 ,表中的值為 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)據(jù)統(tǒng)計(jì),該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對(duì)景區(qū)服務(wù)工作的肯定,請(qǐng)你估計(jì)該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下定義:對(duì)于⊙O的弦MN和⊙O外一點(diǎn)P(M,O,N三點(diǎn)不共線,且點(diǎn)P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON=180°時(shí),則稱點(diǎn)P是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).圖1是點(diǎn)P為線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的示意圖.
在平面直角坐標(biāo)系xOy中,⊙O的半徑為1.
(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點(diǎn)中,是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖3,M(0,1),N(,﹣),點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).
①∠MDN的大小為 ;
②在第一象限內(nèi)有一點(diǎn)E(m,m),點(diǎn)E是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),判斷△MNE的形狀,并直接寫出點(diǎn)E的坐標(biāo);
③點(diǎn)F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時(shí),求點(diǎn)F的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別為AB,AC的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°,得到△CFE,連接AF,CD.
(1)四邊形ADCF是什么特殊的四邊形?說(shuō)明理由;
(2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA與⊙O相切于點(diǎn)A,過(guò)點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長(zhǎng)AO交⊙O于點(diǎn)D,與PB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PB是⊙O的切線;
(2)若OC=3,AC=4,求PB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com