【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:a=b=0.我們稱使得成立的一對數(shù)a,b為“相伴數(shù)對”,記為(a,b).
(1)若(1,b)是“相伴數(shù)對”,求b的值;
(2)若(m,n)是“相伴數(shù)對”,其中m≠0,求;
(3)若(m,n)是“相伴數(shù)對”,求代數(shù)式m﹣﹣[4m﹣2(3n﹣1)]的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變量間的關(guān)系不是函數(shù)關(guān)系的是( )
A. 長方形的寬一定,其長與面積
B. 正方形的周長與面積
C. 等腰三角形的底邊長與面積
D. 圓的周長與半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在△ABC中,∠ABC、∠ACB的平分線相交于F,過F作DE∥BC,分別交AB、AC于點D、E.判斷DE=DB+EC是否成立?為什么?
(2)如圖,若點F是∠ABC的平分線和外角∠ACG的平分線的交點,其他條件不變,請猜想線段DE、DB、EC之間有何數(shù)量關(guān)系?
證明你的猜想。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為-20,點B表示的數(shù)為16.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動.若點P、Q同時出發(fā),設(shè)運動時間為t(t>0)秒.
(1)填空:①點A、B之間的距離為 ;
②點P表示的數(shù)為 ,點Q表示的數(shù)為 (用含t的代數(shù)式表示);
(2)當點P、Q到原點O的距離相等時,求t的值并求出此時點Q表示的數(shù);
(3)若點P從點A出發(fā)到達點B后立刻返回到點A并保持速度不變,點Q到達點A時停止運動,問點P運動多少秒時與點Q相距6個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面給出的數(shù)軸中,點 A 表示 1,點 B 表示-2,回答下面的問題:
(1)A、B 之間的距離是 ;
(2)觀察數(shù)軸,與點 A 的距離為 5 的點表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使點 A 與-3 表示的點重合,則點 B 與數(shù) 表示的點重合;
(4)若數(shù)軸上 M、N 兩點之間的距離為 2018(M 在 N 的左側(cè)),且 M、N 兩點經(jīng)過(3)中折 疊 后 互 相 重 合 , 則 M 、 N 兩 點 表 示 的 數(shù) 分 別 是 : M : ;N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.點P從點A開始以2厘米/秒的速度沿A→B→C的方向移動,點Q從點C開始以1厘米/秒的速度沿C→A→B的方向移動,如果點P、Q同時出發(fā),用t(秒)表示移動時間,那么:
(1)如圖1,請用含t的代數(shù)式表示,①當點Q在AC上時,CQ= ;②當點Q在AB上時,AQ= ;
③當點P在AB上時,BP= ;④當點P在BC上時,BP= .
(2)如圖2,若點P在線段AB上運動,點Q在線段CA上運動,當QA=AP時,試求出t的值.
(3)如圖3,當P點到達C點時,P、Q兩點都停止運動,當AQ=BP時,試求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)完三角形的內(nèi)、外角后,教師要求同學(xué)們根據(jù)所學(xué)的知道設(shè)計一個利用“三角形一個外角等于與它不相鄰的兩個內(nèi)角的和”求解的問題.如圖:在△ABC中,∠1=∠2=∠3.
(1)試說明:∠BAC=∠DEF;
(2)若∠BAC=70°,∠DFE=50°,求∠ABC度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1) 48()- (-48) (-8) ;
(2) 12 〡0.5〡 2 (3)2 ];
(3)先化簡,再求值:
已知m 3, n ,求3m2n 2mn2 2(mn m2n) mn] 3mn2 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com