【題目】如圖,四邊形ABCD是正方形,直線,,分別通過A,B,C三點(diǎn),且,若與的距離為5,與的距離為7,則正方形ABCD的面積等于( )
A. 148 B. 70 C. 144 D. 74
【答案】D
【解析】分析:過A作AM⊥直線b于M,過D作DN⊥直線c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根據(jù)AAS推出△AMD≌△CND,根據(jù)全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.
詳解:如圖:
過A作AM⊥直線b于M,過D作DN⊥直線c于N,
則∠AMD=∠DNC=90°,
∵直線b∥直線c,DN⊥直線c,
∴∠2+∠3=90°,
∵四邊形ABCD是正方形,
∴AD=DC,∠1+∠2=90°,
∴∠1=∠3,
在△AMD和△CND中,
∵∠1=∠3,
∠AMD=∠CND,
AD=DC,
∴△AMD≌△CND,
∴AM=CN,
∵a與b之間的距離是5,b與c之間的距離是7,
∴AM=CN=5,DN=7,
在Rt△DNC中,由勾股定理得:DC2=DN2+CN2=72+52=74,
即正方形ABCD的面積為74,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)= ,
…
猜想:(x﹣1)(xn+xn﹣1+…+x2+x+1)= ,
(2)根據(jù)以上結(jié)果,試寫出下面兩式的結(jié)果
①(x﹣1)(x49+x48+…+x2+x+1)= ,
②(x20﹣1)÷(x﹣1)= ,
(3)利用以上結(jié)論求值:1+3+32+33+34+……+32017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2+2x+的圖象向下平移9個(gè)單位,求平移后的圖象的表達(dá)式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),直線y=kx+b(k>0)過點(diǎn)B,且與拋物線的另一個(gè)交點(diǎn)為C,直線BC上方的拋物線與線段BC組成新的圖象,當(dāng)此新圖象的最小值大于﹣5時(shí),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請(qǐng)?zhí)羁胀?/span>
成證明過程:
∵∠1+∠2=180°( )∠1+∠______=180°
∴∠2=∠DFE( )
∴AB∥EF( )
∴∠3=∠ADE( )
又∵∠3=∠B
∴∠ADE=∠_______
∴DE∥BC( )
∴∠ACB=∠4( )
∴∠ACB=65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 分別交x軸、y軸于A、B兩點(diǎn),線段AB的垂直平分線分別交x軸、y軸于C、D兩點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB'C'D'的位置,旋轉(zhuǎn)角為(0°<<90°).若∠1=112°,則∠的大小是( )
A. 22° B. 20° C. 28° D. 68°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)在所給網(wǎng)格中按下列要求操作:
(1)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C, 使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形, 且腰長(zhǎng)是無理數(shù), 則C點(diǎn)坐標(biāo)是____________,△ABC的面積是_____________________.
(2)畫出△ABC,以點(diǎn)C為旋轉(zhuǎn)中心、旋轉(zhuǎn)180°后的△A′B′C,連結(jié)AB′和A′B, 則四邊形AB A′B′的形狀是何特殊四邊形?___________________.
(3)在坐標(biāo)軸上是否存在P點(diǎn),使得△PAB與△CAB的面積相等?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)(寫出一種情況即可)___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)2013﹣2017年某市財(cái)政總收入(單位:億元)統(tǒng)計(jì)圖所提供的信息,下列判斷正確的是( 。
A. 2013~2017年財(cái)政總收入呈逐年增長(zhǎng)
B. 預(yù)計(jì)2018年的財(cái)政總收入約為253.43億元
C. 2014~2015年與2016~2017年的財(cái)政總收入下降率相同
D. 2013~2014年的財(cái)政總收入增長(zhǎng)率約為6.3%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com