【題目】計(jì)算:
(1)(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)= ,
…
猜想:(x﹣1)(xn+xn﹣1+…+x2+x+1)= ,
(2)根據(jù)以上結(jié)果,試寫出下面兩式的結(jié)果
①(x﹣1)(x49+x48+…+x2+x+1)= ,
②(x20﹣1)÷(x﹣1)= ,
(3)利用以上結(jié)論求值:1+3+32+33+34+……+32017
【答案】(1)x4﹣1,xn+1﹣1;(2)x50﹣1,x19+x18+…+x+1;(3).
【解析】
(1)根據(jù)已知等式,作出猜想;
(2)根據(jù)已知規(guī)律得出結(jié)果;
(3)原式變形后,利用已知規(guī)律計(jì)算求出值.
(1)(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)=x4﹣1,
…
猜想:(x﹣1)(xn+xn﹣1+…+x2+x+1)=xn+1﹣1,
(2)根據(jù)以上結(jié)果,試寫出下面兩式的結(jié)果
①(x﹣1)(x49+x48+…+x2+x+1)=x50﹣1,
②(x20﹣1)÷(x﹣1)=x19+x18+…+x+1,
(3)1+3+32+33+34+……+32017=(3﹣1)(32017+32016+…+3+1)=,
則原式=.
故答案為:(1)x4﹣1,xn+1﹣1;(2)x50﹣1,x19+x18+…+x+1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形和中,點(diǎn)為它們的直角頂點(diǎn),當(dāng)與有重疊部分時(shí):
(1)①連接,如圖1,求證: ;
②連接,如圖2,求證: ;
(2)當(dāng)與無(wú)重疊部分時(shí):連接,如圖3,當(dāng), 時(shí),計(jì)算四邊形面積的最大值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn);
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長(zhǎng);
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖①所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖②所示.
(1)在圖②中,求證:AC=BD,且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖③)時(shí),若AC=7,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,連接BD.若AC=2,BC=1,求△BCD的周長(zhǎng)為;
(2)O為正方形ABCD的中心,E為CD邊上一點(diǎn),F(xiàn)為AD邊上一點(diǎn),且△EDF的周長(zhǎng)等于AD的長(zhǎng).
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補(bǔ)全圖形,求∠EOF的度數(shù);
③若 , 求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是邊AD,AB的中點(diǎn),EF交AC于點(diǎn)H,則的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線,,分別通過(guò)A,B,C三點(diǎn),且,若與的距離為5,與的距離為7,則正方形ABCD的面積等于( )
A. 148 B. 70 C. 144 D. 74
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com