【題目】如圖,直線l1經(jīng)過過點P(2,2),分別交x軸、y軸于點A(4,0),B。

(1)求直線l1的解析式;

(2)點Cx軸負半軸上一點,過點C的直線l2交線段AB于點D

如圖1,當點D恰與點P重合時,點Qt,0)為x軸上一動點,過點QQMx軸,分別交直線l1l2于點MN。若,MN=2MQ,求t的值;

如圖2,若BC=CD,試判斷m,n之間的數(shù)量關系并說明理由。

【答案】(1) ;(2),;

【解析】(1)用待定系數(shù)法求解;(2)Q的位置有兩種情況:當點Q在點A左側,點P的右側時;當點Q在點P的右側時,.都有,再根據(jù)MN=2MQ,可求t的值;(3)由BC=CD,△BCO≌△CDE,C(a,0),D(4+a,-a),并代入解析式,通過解方程組可得.

解:(1)設直線l1的解析式為y=kx+b,

直線經(jīng)過點P(2,2),A(4,0),

, 解得,

直線l1的解析式為y=-x+4;

(2)①∵直線l2過點P(2,2),

即直線l2

Q(t,0),M(t,4-t),N(t,),

1. 當點Q在點A左側,點P的右側時,

,

,解得;

當點Q在點A右側時

,MQ=t-4,

,解得t=10,

過點DDE⊥ACE ,

∵BC=CD,BO=OA,

∠DBC=∠1+∠ABO=∠BDC=∠2+∠DAE,

∴∠1=∠2,

∴△BCO≌△CDE,

∴OC=ED,BO=CE,

C(a,0),D(4+a,-a),

,

解得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FGGH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:(A組:x<155; B組:155≤x<160; C組:160≤x<165; D組165≤x<170;E組:x≥170)

根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組.
(2)樣本中,女生的身高在E組的人數(shù)有人.
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結EF交CD于點G.若G是CD的中點,則BC的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校計劃從某苗木基地購進A、B兩咱樹苗共200棵綠化校園。已知購買了3A種樹苗和5B種樹苗共需700元;購買2A種樹苗和1B種樹苗共需280

(1)每棵A種樹苗、B種樹苗各需多少元?

(2)學校除支付購買樹苗的費用外,平均每棵樹苗還需支付運輸及種植費用20元。設學校購買B種樹苗x棵,購買兩種樹苗及運輸、種植所需的總費用為y元,求yx的函數(shù)關系;

(3)在(2)的條件下,若學校用于綠化的總費用在22400元限額內(nèi),且購買A種樹苗的數(shù)量不少于B種樹苗的數(shù)量,請給出一種費用最省的方案,并求出該方案所需的費用

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市政府決定對市直機關500戶家庭的用水情況作一次調(diào)查,市政府調(diào)查小組隨機抽查了其中的100戶家庭一年的月平均用水量(單位:噸),并將調(diào)查結果制成了如圖所示的條形統(tǒng)計圖.

(1)請將條形統(tǒng)計圖補充完整;

(2)求這100個樣本數(shù)據(jù)的平均數(shù),眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AB∥DC,BD⊥AD,AD=DC=BC=2cm,那么梯形ABCD的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°,平行四邊形ABCD的對角線AC、BD交于點O,過點O作OE⊥AD,則OE=

查看答案和解析>>

同步練習冊答案