【題目】學校計劃從某苗木基地購進A、B兩咱樹苗共200棵綠化校園。已知購買了3A種樹苗和5B種樹苗共需700元;購買2A種樹苗和1B種樹苗共需280

(1)每棵A種樹苗、B種樹苗各需多少元?

(2)學校除支付購買樹苗的費用外,平均每棵樹苗還需支付運輸及種植費用20元。設學校購買B種樹苗x棵,購買兩種樹苗及運輸、種植所需的總費用為y元,求yx的函數(shù)關系;

(3)在(2)的條件下,若學校用于綠化的總費用在22400元限額內,且購買A種樹苗的數(shù)量不少于B種樹苗的數(shù)量,請給出一種費用最省的方案,并求出該方案所需的費用

【答案】(1)每棵A種樹苗需100元,每棵B種樹苗需80元;(2);

(3)最少費用為元.

【解析】(1)設每棵A種樹苗需x元,每棵B種樹苗需y元,列方程組,并解得;(2)結合(1)結果,列出;(3)根據(jù)題意列出不等式組,并在解集中討論方案.

解:(1)設每棵A種樹苗需x元,每棵B種樹苗需y元,列方程組

,

解得,

答:每棵A種樹苗需100元,每棵B種樹苗需80元;

(2);

(3),解得.

,y的增大而減小,即當x=100時費用最少,

最少費用為(元).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A,B兩點,且點A的橫坐標為4,

(1) k的值;

(2)利用圖形直接寫出不等式x>的解;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P,Q兩點(P點在第一象限),若由點 A,B,P,Q為頂點組成的四邊形面積為 24,求點 P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1 , 連接AD1、BC1 . 若∠ACB=30°,AB=1,CC1=x,△ACD與△A1C1D1重疊部分面積為S,則下列結論:
①△A1AD1≌△CC1B;
②當x=1時,四邊形ABC1D1是菱形;
③當x=2時,△BDD1為等邊三角形;
④S= (x﹣2)2(0≤x≤2).
其中正確的是(將所有正確答案的序號都填寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在下列橫線上: 銷售單價x(元);
銷售量y(件);
銷售玩具獲得利潤w(元);
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個裝有進水管和出水管的容器,從某時刻開始4min內只進水不出水,在隨后的8min內既進水又出水,接著關閉進水管直到容器內的水放完,每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:L)與時間(單價:min)之間的關系如圖所示。在第_______分鐘時該容器內的水恰好為10L.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(2k+1)x+4(k﹣ )=0
(1)求證:無論k取何值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長a=4,另兩邊b、c恰好是這個方程的兩個根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,正比例函數(shù)y=kx與一次函數(shù)y=-kx-k(k0)的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x=1,y=,x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

【答案】B

【解析】解析:x2+4xy+4y2=x+2y2==4.故選B.

型】單選題
束】
9

【題目】下列因式分解,正確的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小李從家里出發(fā)騎車到少年宮學習繪畫,學完后立即回家,他離家的距離y(km)與時間x(h)之間的函數(shù)關系如圖所示,有下列結論:①他家離少年宮30km;②他在少年宮一共停留了3h;③他返回家時,離家的距離y(km)與時間x(h)之間的函數(shù)表達式是y=-20x+110;④當他離家的距離y=10時,時間x=.其中正確的是________(填序號).

查看答案和解析>>

同步練習冊答案