如圖,已知拋物線 交 軸于AB兩點,交 軸于點C,拋物線的對稱軸交 軸于點E,點B的坐標為( ,0).

(1)求拋物線的對稱軸及點A的坐標;

(2)在平面直角坐標系 中是否存在點P,與A、B、C三點構(gòu)成一個平行四邊形?若存在,請寫出點P的坐標;若不存在,請說明理由;

(3)連結(jié)CA與拋物線的對稱軸交于點D,在拋物線上是否存在點M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

(1)① 對稱軸

② 當(dāng)時,有

解之,得

∴ 點A的坐標為(,0).

(2)滿足條件的點P有3個,分別為(,3),(2,3),(,).

(3)存在.

當(dāng)時,   ∴ 點C的坐標為(0,3)

DE軸,AO3,EO2,AE1,CO3

  ∴     即   ∴ DE1

4

OE上找點F,使OF,此時2,直線CF把四邊形DEOC

分成面積相等的兩部分,交拋物線于點M

設(shè)直線CM的解析式為,它經(jīng)過點

解之,得     ∴ 直線CM的解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線交x軸于點A、點B,交y軸于點C,且點A(6,0),點C(0,4),AB=5OB,設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形.
(1)求拋物線解析式及頂點坐標;
(2)求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
(4)是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)如圖,已知拋物線交x軸于A、B兩點(點A在點B的左側(cè)),交y軸于點C,已知點B(8,0),tan∠OCB=2,△ABC的面積為8.
(1)求拋物線的表達式;
(2)若平行于x軸的動直線EF從點C 出發(fā),以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于E、F兩點,動點P同時從點B出發(fā)在線段BO上以每秒2個單位的速度運動,連接PF、AF,設(shè)運動時間為t秒.△AFP的面積為S,求S與t的函數(shù)表達式;
(3)在(2)的條件下,是否存在t值,使得以P、B、F為頂點的三角形與△ABC相似?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線交x軸于C(x1,0),D(x2,0)兩點,(x1<x2)且

    (1)試確定m的值;

    (2)過點A(-1,-5)和拋物線的頂點M的直線交x軸于點B,求B點的坐標;

    (3)設(shè)點P(a,b)是拋物線上點C到點M之間的一個動點(含C、M點),是以PO為腰、底邊OQ在x軸上的等腰三角形,過點Q作x軸的垂線交直線AM于點R,連結(jié)PR。設(shè)的面積為S,求S與a之間的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線x軸的正半軸于點A,交y軸于點B

1.求A、B兩點的坐標,并求直線AB的解析式;

2.設(shè))是直線上的一點,QOP的中點(O是原點),以PQ為對角線作正方形PEQF.若正方形PEQF與直線AB有公共點,求x的取值范圍;

3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省初三第二學(xué)期質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線交x軸的正半軸于點A,交y軸于點B.

1.求直線AB的解析式;

2.設(shè)P(x,y)(x>0)是直線y = x上的一點,Q是OP 的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;

3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案