(2011•路南區(qū)一模)機器人“海寶”在某圓形區(qū)域按下列程序設計表演.其中,B、C在圓O上.
(1)請按程序補全下面圖形;
(2)求BC的距離;
(3)求圓O的半徑長.
(本題參考數(shù)據(jù):sin67.4°=
12
13
,cos67.4°=
5
13
,tan67.4°=
12
5
分析:(1)根據(jù)題意畫出圖形即可;
(2)過O作OH⊥AB于H,根據(jù)銳角三角函數(shù)求出OH,根據(jù)垂徑定理求出BG=GC,求出BG長即可;
(3)求出AH、OH長,根據(jù)勾股定理求出OB即可.
解答:解:(1)如圖所示:

(2)過O作OH⊥AB于點H,
根據(jù)題意得:AB⊥BC,NS⊥BC,
∴AB∥NS,
∴∠BAO=∠AON=67.4°,
在Rt∉AHO中,OH=AOsin∠BAO=13×sin67.4°=12,
設NS交BC于G,
∵AB∥NS,GB⊥AB,OH⊥AB,
∴BG=OH=12,
∵NS⊥BC,NS過圓心O,
∴CB=2BG=24,
答:所求弦BC的長是24米.

(3)由(2)知:在Rt△AHO中,
AH=AOcos∠bao=13×cos67.4°=5,
∵AB=14,
∴HB=9,
連接OB,在△BHO中,OB=
OH2+HB2
=
122+92
=15,
∴所求圓的半徑是15米.
點評:本題考查了垂徑定理、勾股定理、銳角三角函數(shù)等知識點的應用,關鍵是①正確畫出圖形,②根據(jù)題意求出OH、AH的長,題型較好,綜合性比較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•路南區(qū)一模)在△ABC中,D、E分別是邊AB、AC的中點,若BC=3,則DE的長是
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•路南區(qū)一模)如圖,在正方形ABCD的外側作等邊△DCE,則∠CBE的度數(shù)為
15°
15°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•路南區(qū)一模)從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形后,將其截成四個相同的等腰梯形(如圖①),可以拼成一個平行四邊形(如圖②).現(xiàn)有一平行四邊形紙片(如圖③)已知∠A=45°,AB=6,AD=4.若將該紙片按圖②方式截成四個相同的等腰梯形,然后按圖①方式拼圖,則得到的圖①中陰影部分的面積為
12
2
12
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•路南區(qū)一模)如圖,四邊形OABC是面積為4的正方形,函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點B.
(1)求函數(shù)的解析式;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設線段MC′、NA′分別與函數(shù)y=
k
x
(k>0)
的圖象交于點E、F,請判斷線段EC′與FA′的大小關系,并說明理由;
(3)將函數(shù)y=
k
x
的圖象沿y軸向上平移使其過點C′,得到圖象l1,直接說出圖象l1是否過點A′?

查看答案和解析>>

同步練習冊答案