已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于_______.


  1. A.
    65°
  2. B.
    50°
  3. C.
    45°
  4. D.
    40°
B
分析:連接OA,OB.根據圓周角定理和四邊形內角和定理求解即可.
解答:解:連接OA,OB,
∵PA、PB切⊙O于點A、B,
∴∠PAO=∠PBO=90°,
由圓周角定理知,∠AOB=2∠ACB=130°,
∴∠APB=360°-∠PAO-∠PBO-∠AOB=360°-90°-90°-130°=50°.
故選B.
點評:本題考查了切線的性質、圓周角定理、以及四邊形的內角和為360度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,PA是圓的切線,A為切點,PBC是圓的割線,且BC=2PB,求
PAPB
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、已知:如圖,PA、PB是⊙O的切線;A、B是切點;連接OA、OB、OP,
(1)若∠AOP=60°,求∠OPB的度數(shù);
(2)過O作OC、OD分別交AP、BP于C、D兩點,
①若∠COP=∠DOP,求證:AC=BD;
②連接CD,設△PCD的周長為l,若l=2AP,判斷直線CD與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,PA切⊙O于A,△ABC為⊙O的內接三角形,CA∥EP,AB、CB的延長線分別交DP精英家教網于點D、E.
(1)求證:DE•DP=DA•DB.
(2)若AB=4,AC=6,DB=3,求DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,PA切⊙O于A點,PO交⊙O于B點.PA=15cm,PB=9cm.求⊙O的半徑長.

查看答案和解析>>

同步練習冊答案