【題目】如圖所示,AB是☉O的弦,C,D為弦AB上兩點(diǎn),OC=OD,延長(zhǎng)OC,OD,分別交☉O于點(diǎn)E,F.

試證: =.

【答案】證明見(jiàn)解析

【解析】試題分析:根據(jù)等腰三角形的性質(zhì)由OC=OD得∠OCD=∠ODC,由OA=OB得∠A=∠B,再根據(jù)三角形外角性質(zhì)得∠OCD=∠A+∠AOC,∠ODC=∠B+∠BOD,利用等量代換得到∠AOC=∠BOD,然后根據(jù)在同圓和等圓中,相等的圓心角所對(duì)的弧相等即可得到結(jié)論.

證明:∵OC=OD,∴∠OCD=∠ODC.

∵AO=OB,∴∠A=∠B.

∴∠OCD-∠A=∠ODC-∠B,

即∠AOC=∠BOD,

即∠AOE=∠BOF.∴=.

點(diǎn)睛:本題考查了圓心角、弧、弦的關(guān)系:在同圓和等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在太陽(yáng)光的照射下,矩形相框在地面上的投影不可能是( )

A.一條線(xiàn)段B.矩形C.三角形D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎和小亮上山游玩,小顆乘坐纜車(chē),小亮步行,兩人相約在山頂?shù)睦|車(chē)終點(diǎn)會(huì)合.已知小亮行走到纜車(chē)終點(diǎn)的路程是纜車(chē)到山頂?shù)木(xiàn)路長(zhǎng)的2倍,小顆在小亮出發(fā)后50分才乘上纜車(chē),纜車(chē)的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米。圖中的折線(xiàn)表示小亮在整個(gè)行走過(guò)程中yx的變化關(guān)系.

(1)小亮行走的總路程是_________米,他途中休息了___________分;

(2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

(3)當(dāng)小穎到達(dá)纜車(chē)終點(diǎn)時(shí),小亮離纜車(chē)終點(diǎn)的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)命題:

①、同位角相等;②、如果兩個(gè)角的和是 180 度,那么這兩個(gè)角是鄰補(bǔ)角;

③、在同一平面內(nèi),平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行;

④、在同一平面內(nèi),垂直于同一條直線(xiàn)的兩條直線(xiàn)互相垂直. 其中是真命題的個(gè)數(shù)有( )個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(﹣1,2)是由點(diǎn)Q0,﹣1)經(jīng)過(guò)( 。┒玫降模

A.先向右平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度

B.先向左平移1個(gè)長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度

C.先向上平移3個(gè)長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度

D.先向下平移1個(gè)長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在A(yíng)B、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線(xiàn)AB、BC上運(yùn)動(dòng),直線(xiàn)AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫(xiě)出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的面積是60,請(qǐng)完成下列問(wèn)題:

1)如圖1,若AD△ABCBC邊上的中線(xiàn),則△ABD的面積________△ACD的面積(填”““=”

2)如圖2,若CDBE分別是ABCAB、AC邊上的中線(xiàn),求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:SADO=SBDO , 同理:SCEO=SAEO , 設(shè)SADO=xSCEO=y,則SBDO=x,SAEO=y由題意得:SABE=SABC=30,SADC=SABC=30,可列方程組為: , 解得,通過(guò)解這個(gè)方程組可得四邊形ADOE的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】am5,an2,求a2m+3n值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,DE=3.

求:(1)⊙O的半徑;(2)弦AC的長(zhǎng);(3)陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案