(2003•泰安)如圖,在平行四邊形ABCD中,M、N分別是邊AB、CD的中點(diǎn),DB分別交AN、CM于點(diǎn)P、Q.下列結(jié)論:(1)DP=PQ=QB;(2)AP=CQ;(3)CQ=2MQ;(4)S△ADP=S平行四邊形ABCD.其中正確結(jié)論的個(gè)數(shù)為( )

A.4
B.3
C.2
D.1
【答案】分析:平行四邊形ABCD中,M、N分別是邊AB、CD的中點(diǎn),易證△ADN≌△CBM,AN∥CM,根據(jù)M是AB的中點(diǎn),因而BQ=PQ,同理DP=PQ,因而DP=PQ=QB;同理易證△APD≌△CBQ,則AP=CQ;根據(jù)AB∥CD,△BMQ∽△DCQ,==2,CQ=2MQ;根據(jù)DP=PQ=QB,AN∥CM得到△ADP與平行四邊形ABCD中AD邊上的高的比是1:3,因而S△ADP=S平行四邊形ABCD
解答:解:平行四邊形ABCD中,M、N分別是邊AB、CD的中點(diǎn),
∴DN=MB,∠MBC=∠NDA,AD=BC,
∴△ADN≌△CBM,
∴∠DNA=CMB,
∵AB∥CD,
∴∠DNA=∠NAM,
∴∠NAM=∠CMB,
∴AN∥CM,
∵M(jìn)是AB的中點(diǎn),
∴BQ=PQ,
同理DP=PQ,因而DP=PQ=QB,
同理易證△APD≌△CBQ,則AP=CQ,
∵AB∥CD,
∴△BMQ∽△DCQ,
==2,
∴CQ=2MQ,
∵DP=PQ=QB,
∴AN∥CM得到△ADP與平行四邊形ABCD中AD邊上的高的比是1:3,
∴S△ADP=S平行四邊形ABCD
∴正確結(jié)論的個(gè)數(shù)為:(1)DP=PQ=QB;(2)AP=CQ;(3)CQ=2MQ.
故選B.
點(diǎn)評:本題考查的是利用平行四邊形的性質(zhì)結(jié)合三角形全等來解決有關(guān)線段相等的證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•泰安)如圖,矩形OBCD的邊OB=2,OD=4,過點(diǎn)B、C且與x軸相切于點(diǎn)A的⊙M,與y軸的另一交點(diǎn)為E.
(1)求點(diǎn)A、E的坐標(biāo);
(2)求過A、C、E三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•泰安)如圖,矩形OBCD的邊OB=2,OD=4,過點(diǎn)B、C且與x軸相切于點(diǎn)A的⊙M,與y軸的另一交點(diǎn)為E.
(1)求點(diǎn)A、E的坐標(biāo);
(2)求過A、C、E三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•泰安)如圖,水平放著的圓柱形排水管的截面半徑是0.5m,其中水面寬AB為0.6m,則水的最大深度為    m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•泰安)如圖,菱形紙片ABCD的一內(nèi)角為60°,邊長為2,將它繞O點(diǎn)順時(shí)針旋轉(zhuǎn)90°后到A′B′C′D′位置,則旋轉(zhuǎn)前后兩菱形重疊部分多邊形的周長是( )
A.8
B.4(-1)
C.8(-1)
D.4(+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•泰安)如圖,矩形ABCD中,AB=2,BC=2,以BC的中點(diǎn)E為圓心,以AB長為半徑作弧MHN與AB及CD交于M、N,與AD相切于H,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案