(2010•蘭州)如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN•MC的值.
【答案】分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故BM2=MN•MC;代入數(shù)據(jù)可得MN•MC=BM2=8.
解答:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.(3分)

(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=AB.(6分)

(3)解:連接MA,MB,
∵點(diǎn)M是的中點(diǎn),
,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.

∴BM2=MN•MC.
又∵AB是⊙O的直徑,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
∴MN•MC=BM2=8.(10分)
點(diǎn)評(píng):此題主要考查圓的切線的判定及圓周角定理的運(yùn)用和相似三角形的判定和性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2010•蘭州)如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時(shí),頭部剛好接觸到繩子,則繩子的最低點(diǎn)距地面的距離為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•蘭州)如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘭州)如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘭州)如圖,P1是反比例函數(shù)y=(k>0)在第一象限圖象上的一點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0).
(1)當(dāng)點(diǎn)P1的橫坐標(biāo)逐漸增大時(shí),△P1OA1的面積將如何變化?
(2)若△P1OA1與△P2A1A2均為等邊三角形,求此反比例函數(shù)的解析式及A2點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•蘭州)如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時(shí),頭部剛好接觸到繩子,則繩子的最低點(diǎn)距地面的距離為    米.

查看答案和解析>>

同步練習(xí)冊(cè)答案