【題目】小明同學(xué)報名參加學(xué)校運(yùn)動會,有以下4個項目可供選擇:
徑賽項目:100m,200m,分別用、、表示;
田賽項目:立定跳遠(yuǎn)用B表示.
小明從4個項目中任選一個,恰好是徑賽項目的概率為______;
小明從4個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個景點(diǎn)A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點(diǎn)處.
(1)求景點(diǎn)B,E之間的距離;
(2)求景點(diǎn)B,A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C,D是半圓O上的兩點(diǎn),弧AC=弧BD,AE與弦CD的延長線垂直,垂足為E.
(1)求證:AE與半圓O相切;
(2)若DE=2,AE=,求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接AC,做△ABC的外接圓⊙O,延長EC交⊙O于點(diǎn)D,連接BD、AD,BC與AD交于點(diǎn)F分,∠ABC=∠ADB。
(1)求證:AE是⊙O的切線;
(2)若AE=12,CD=10,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線交AB邊于點(diǎn)P,再以點(diǎn)P為圓心,PA長為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中BC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某華為手機(jī)專賣店銷售臺A型手機(jī)和臺B型手機(jī)的利潤為元,銷售A型手機(jī)和臺B型手機(jī)的利潤為元.
求每臺A型手機(jī)和B型手機(jī)的利潤;
專賣店計劃購進(jìn)兩種型號的華為手機(jī)共臺,其中B型手機(jī)的進(jìn)貨量不低于A型手機(jī)的倍,設(shè)購進(jìn)的A型手機(jī)臺,這臺手機(jī)全部銷售的總利潤為元.
②直接寫出關(guān)于的函數(shù)關(guān)系式為 ,的取值范圍是 ;
②該商店如何進(jìn)貨才能使銷售總利潤最大?說明原因.
專賣店預(yù)算員按照中的方案準(zhǔn)備進(jìn)貨,同時專賣店對A型手機(jī)銷售價格下調(diào)元,結(jié)果預(yù)算員發(fā)現(xiàn)無論按照哪種進(jìn)貨方案最后銷售總利潤不變,請你直接寫出的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD的邊AB上任取一點(diǎn)點(diǎn)P不與A,B重合,分別連接PD,PC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把P叫四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個三角形都相似,我們就把P叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)“.
解決問題
如圖,,試判斷點(diǎn)P是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由.
如圖,在四邊形ABCD中,A,B,C,D四點(diǎn)均在正方形網(wǎng)格網(wǎng)格中每個小正方形的邊長為的格點(diǎn)即每個小正方形的頂點(diǎn)上,試在圖中畫出四邊形ABCD的邊BC上的相似點(diǎn),并寫出對應(yīng)的相似三角形;
如圖,在四邊形ABCD中,,,,點(diǎn)P在邊BC上,若點(diǎn)P是四邊形ABCD的邊BC上的一個強(qiáng)相似點(diǎn),求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AB=9,BC=12,點(diǎn)D是BC的中點(diǎn),聯(lián)結(jié)AD,AD=9,點(diǎn)E在AD邊上,且,聯(lián)結(jié)BE.
(1)求證:△BED∽△ABD;
(2)聯(lián)結(jié)CE,求∠CED 的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠C=90°,以AB為直徑的⊙O交AD于點(diǎn)E,CD=ED,連接BD交⊙O于點(diǎn)F.
(1)求證:BC與⊙O相切;
(2)若BD=10,AB=13,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com