【題目】如圖,正方形AEFG的頂點(diǎn)E、G在正方形ABCD的邊AB、AD上,連接BF、DF.
(1)求證:BF=DF;
(2)連接CF,請(qǐng)直接寫出的值為__________(不必寫出計(jì)算過程).
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)正方形的性質(zhì)得出BE=DG,再利用△BEF≌△DGF求得BF=DF,
(2)由BF=DF得點(diǎn)F在對(duì)角線AC上,再運(yùn)用平行線間線段的比求解.
(1)∵四邊形ABCD和AEFG都是正方形,
∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,
∴BE=AB-AE,DG=AD-AG,
∴BE=DG,
∴△BEF≌△DGF(SAS),
∴BF=DF;
(2)連接AC,
∵BF=DF
∴點(diǎn)F在對(duì)角線AC上,
∵AD∥EF∥BC,
∴CF:BE=AF:AE=AE:AE=,
∴CF:BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,對(duì)折矩形紙片,使與重合,折痕為,展平后再過點(diǎn)折疊,使點(diǎn)落在上的點(diǎn),折痕為.再次展平,連接,,有下列結(jié)論:①;②與相似;③的長(zhǎng)為:④若分別為線段上的動(dòng)點(diǎn)(不包含端點(diǎn)),則的最小值是.其中正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)認(rèn)真閱讀下面的數(shù)學(xué)探究,并完成所提出的問題.
(1)探究1:如圖1,在邊長(zhǎng)為的等邊三角形中,是邊上任意一點(diǎn),連接,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)至處,連接,求面積的最小值.
(2)探究2:如圖2,若是腰長(zhǎng)為的等腰直角三角形,,(1)中的其他條件不變,請(qǐng)求出此時(shí)面積的最小值.
(3)探究3:如圖3,在中,,,,是邊上任意一點(diǎn),連接,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)至處,、、三點(diǎn)共線,連接,求的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線交BC于點(diǎn)D,E為AB上的一點(diǎn),DE=DC,以D為圓心,DB長(zhǎng)為半徑作⊙D,AB=5,EB=3.
(1)求證:AC是⊙D的切線;
(2)求線段AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,軸,如圖1,,且.
(1)點(diǎn)坐標(biāo)為__________,點(diǎn)坐標(biāo)為__________;
(2)求過、、三點(diǎn)的拋物線表達(dá)式;
(3)如圖2,拋物線對(duì)稱軸與交于點(diǎn),現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度在上向點(diǎn)運(yùn)動(dòng),另一點(diǎn)從點(diǎn)與點(diǎn)同時(shí)出發(fā),以每秒5個(gè)單位在拋物線對(duì)稱軸上運(yùn)動(dòng).當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)、同時(shí)停止運(yùn)動(dòng),問點(diǎn)、運(yùn)動(dòng)到何處時(shí),面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖, 在和中,,,, 連接,交于點(diǎn).填空:①的值為 :②的度數(shù)為
(2)類比探究
如圖, 在和中,,, 連接交的延長(zhǎng)線于點(diǎn).請(qǐng)求出能的值及的度數(shù), 并說明理由;
(3)拓展延伸
在的條件下, 將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn), 若,,請(qǐng)直接寫出當(dāng)點(diǎn)與點(diǎn)重合時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“文明在行動(dòng)”的志愿者活動(dòng),準(zhǔn)備購(gòu)買某一品牌書包送到希望學(xué)校.在商店,無論一次購(gòu)買多少,價(jià)格均為每個(gè)50元.在商店,一次購(gòu)買數(shù)量不超過10個(gè)時(shí),價(jià)格為每個(gè)60元;一次購(gòu)買數(shù)量超過10個(gè)時(shí),超出10個(gè)部分打八折.設(shè)一次購(gòu)買該品牌書包的數(shù)量為x個(gè).
(Ⅰ)根據(jù)題意填表:
一次購(gòu)買數(shù)量/個(gè) | 5 | 10 | 15 | … |
商店花費(fèi)/元 | 500 | … | ||
商店花費(fèi)/元 | 600 | … |
(Ⅱ)設(shè)在商店花費(fèi)元,在商店花費(fèi)元,分別求出關(guān)于的函數(shù)解析式;
(Ⅲ)根據(jù)題意填空;
①若小麗在商店和在商店一次購(gòu)買書包的數(shù)量相同,且花費(fèi)相同,則她在同一商店一次購(gòu)買書包的數(shù)量為______個(gè).
②若小麗在同一商店一次購(gòu)買書包的數(shù)量為50個(gè),則她在兩個(gè)商店中的______商店購(gòu)買花費(fèi)少;
③若小麗在同一商店一次購(gòu)買書包花費(fèi)了1800元,則她在兩個(gè)商店中_______商店購(gòu)買數(shù)量多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會(huì)文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進(jìn)行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購(gòu)入以上兩種智能設(shè)備若干,已知購(gòu)買甲型智能設(shè)備花費(fèi)萬元,購(gòu)買乙型智能設(shè)備花費(fèi)萬元,購(gòu)買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為萬元.
求甲、乙兩種智能設(shè)備單價(jià);
垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多元.調(diào)查發(fā)現(xiàn),若燃料棒售價(jià)為每噸元,平均每天可售出噸,而當(dāng)銷售價(jià)每降低元,平均每天可多售出噸.垃圾處理廠想使這種燃料棒的銷售利潤(rùn)平均每天達(dá)到元,且保證售價(jià)在每噸元基礎(chǔ)上降價(jià)幅度不超過,求每噸燃料棒售價(jià)應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會(huì),很多學(xué)校都開展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB、BC兩部分組成,AB、BC的長(zhǎng)度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α為20°,BC與水平面的夾角β為45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420,tan20o=0.3640,cos20o=0.9400).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com