100、張大爺從市場(chǎng)上買回一塊矩形鐵片,將鐵片的四個(gè)角各剪出一個(gè)邊長(zhǎng)為1米的正方形,如圖所示,剩下的部分剛好能圍成一個(gè)容積為8米3的無蓋長(zhǎng)方體且此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng)比寬多2米,問張大爺應(yīng)購(gòu)買多大的鐵皮?
分析:本題可設(shè)運(yùn)輸箱底面寬為x米,則長(zhǎng)為(x+2)米,所以鐵片的長(zhǎng)為(x+4)米,寬為(x+2)米,結(jié)合圖形可知,此長(zhǎng)方體運(yùn)輸箱的高為1米,進(jìn)而可列出方程,求出答案.
解答:解:根據(jù)題意,得x(x+2)=8,
所以x2+2x-8=0,
解得x1=2,x2=-4(舍去)
所以鐵皮面積為(x+2)(x+2+2)=(2+2)(2×3)=24米2
答:張大爺應(yīng)購(gòu)買24米2鐵皮.
點(diǎn)評(píng):這類題目體現(xiàn)了數(shù)形結(jié)合的思想,可結(jié)合圖形,設(shè)出未知數(shù),構(gòu)建一元二次方程求解,另外還要注意解的取舍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,張大叔從市場(chǎng)上買回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能圍成一個(gè)容積為15m3的無蓋長(zhǎng)方體箱子,且此長(zhǎng)方體箱子的底面長(zhǎng)比寬多2米,現(xiàn)已知購(gòu)買這種鐵皮每平方米需20元錢,問張大叔購(gòu)回這張矩形鐵皮共花了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,張大叔從市場(chǎng)上買回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能圍成一個(gè)容積為32米3的無蓋長(zhǎng)方體箱子,且此長(zhǎng)方體箱子的底面長(zhǎng)是寬2倍,現(xiàn)已知購(gòu)買這種鐵皮每平方米需20元錢,問張大叔購(gòu)回這張矩形鐵皮共花了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

張大叔從市場(chǎng)上買回一塊長(zhǎng)方形鐵皮,他將此長(zhǎng)方形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1m的正方形后,剩下的部分剛好能圍成一個(gè)容積為15m3的無蓋長(zhǎng)方體運(yùn)輸箱,且此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng)比寬多2m.現(xiàn)已知購(gòu)買這種鐵皮每平方米需20元.
問:
(1)求此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng);
(2)張大叔購(gòu)買這張長(zhǎng)方形鐵皮共花了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《22.3 實(shí)際問題與一元二次方程》2009年同步練習(xí)(解析版) 題型:解答題

張大爺從市場(chǎng)上買回一塊矩形鐵片,將鐵片的四個(gè)角各剪出一個(gè)邊長(zhǎng)為1米的正方形,如圖所示,剩下的部分剛好能圍成一個(gè)容積為8米3的無蓋長(zhǎng)方體且此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng)比寬多2米,問張大爺應(yīng)購(gòu)買多大的鐵皮?

查看答案和解析>>

同步練習(xí)冊(cè)答案