【題目】在數(shù)軸上,為原點,點表示數(shù),點表示數(shù),.
(1)求線段的長;
(2)如圖,動點從點出發(fā),以每秒1個單位的速度沿數(shù)軸向左勻速運動,動點從點出發(fā),以每秒個單位的速度沿數(shù)軸向右勻速運動.、兩點同時出發(fā),運動時間為.
(i)當(dāng)時,求運動時間;
(ii)、、三點中的某一個點是另兩個點的中點,求點表示的數(shù).
【答案】(1)線段的長為7;(2)(i)運動時間為秒或8秒;(ii)點表示的數(shù)為-或-
【解析】
(1)由可得a=-3,b=4,由b-a可得線段的長;
(2)由題意可得AC=t,OD=t,(i)分點D在點B左側(cè)和右側(cè)兩種情況討論即可;(ii)分點D在點B左側(cè)時CD=BD和點D在點B右側(cè)時BC=BD兩種情況討論即可.
(1)由,
可得a=-3,b=4,
線段的長為b-a=4-(-3)=7;
(2)由題意可得AC=t,OD=t,OB=4,
(i)∵,
∴BD=2t,
當(dāng)點D在點B左側(cè)時,如圖:
此時OD+BD=OB,即t+2t=4,解得t=;
當(dāng)點D在點B右側(cè)時,如圖:
此時OB+BD=OD,即4+2t=t,解得t=8;
故運動時間為秒或8秒;
(ii)如圖:
當(dāng)點D在點B左側(cè)時,點D為BC的中點,
此時CD=BD,
即3+t+t=4-t,
解得t=,
此時c=-3-=-;
如圖:
當(dāng)點D在點B右側(cè)時,點B為CD的中點,
此時BC=BD,
即3+4+t=t-4,
解得t=,
此時c=-3-=-,
綜上,點表示的數(shù)為-或-
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是直線上的一點,將一直角三角板如圖擺放,過點作射線平分.
(1)如圖1,如果,依題意補全圖形,求度數(shù);
(2)當(dāng)直角三角板繞點順時針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊在直線的上方,若,其他條件不變,請你直接用含的代數(shù)式表示的度數(shù)為 ;
(3)當(dāng)直角三角板繞點繼續(xù)順時針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)與之間有怎樣的數(shù)量關(guān)系?請直接寫出你的發(fā)現(xiàn): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線L與y=2x+1的交于點A(2,a),與直線y=x+2的交于點B(b,1)
(1)求a,b的值;
(2)求直線l的函數(shù)表達式;
(3)求直線L、x軸、直線y=2x+1圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚傳統(tǒng)文化”的號召,萬州區(qū)某中學(xué)舉行了一次中學(xué)生詩詞大賽活動.小何同學(xué)對他所在八年級一班參加詩詞大賽活動同學(xué)的成績進行了整理,成績分別100分、90分、80分、70分,并繪制出如下的統(tǒng)計圖.
請根據(jù)以上提供的信息,解答下列問題:
(1)該校八年級(1)班參加詩詞大賽成績的眾數(shù)為______分;并補全條形統(tǒng)計圖.
(2)求該校八年級(1)班參加詩詞大賽同學(xué)成績的平均數(shù);
(3)結(jié)合平時成績、期中成績和班級預(yù)選成績(如下表),年級擬從該班小何和小王的兩位同學(xué)中選一名學(xué)生參加區(qū)級決賽,按的比例計算兩位同學(xué)的最終得分,請你根據(jù)計算結(jié)果確定選誰參加區(qū)級決賽.
學(xué)生姓名 | 平時成績 | 期中成績 | 預(yù)選成績 |
小何 | 80 | 90 | 100 |
小王 | 90 | 100 | 90 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A,B,C在數(shù)軸上表示數(shù)a,b,c,滿足(b+2)2+(c﹣24)2=0,多項式x|a+3|y2﹣ax3y+xy2﹣1是關(guān)于字母x,y的五次多項式.
(1)a的值________,b的值________,c的值________.
(2)已知螞蟻從A點出發(fā),途徑B,C兩點,以每秒3cm的速度爬行,需要多長時間到達終點C?
(3)求值:a2b﹣bc.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G.
①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點E為邊BC的四等分點時(BE>CE),求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校假期由校長帶領(lǐng)該校“三好學(xué)生”去旅游,甲旅行社說“若校長買全票一張,則學(xué)生半價.”乙旅行社說“全部人六折優(yōu)惠”若全票價是1200元,則:
(1)若學(xué)生人數(shù)是20人,甲、乙旅行社收費分別是多少?
(2)當(dāng)學(xué)生人數(shù)的多少時,兩家旅行社的收費一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認(rèn)為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則,即AD=csinB,AD=bsinC,于是csinB=bsinC,即 ,同理有: ,所以.
即:在一個銳角三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)某次巡邏中,如圖(3),我漁政船在C處測得釣魚島A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政船距釣魚島A的距離AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com