【題目】如圖(1)所示:等邊△ABC中,線段AD為其內(nèi)角角平分線,過(guò)D點(diǎn)的直線B1C1⊥AC于C1交AB的延長(zhǎng)線于B1.
(1)請(qǐng)你探究:,是否都成立?
(2)請(qǐng)你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內(nèi)角角平分線,請(qǐng)問(wèn)一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90,AC=8,BC=,DE∥AC交AB于點(diǎn)E,試求的值.
【答案】(1)成立,理由見(jiàn)解析;(2)成立,理由見(jiàn)解析;(3)
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得到AD垂直平分BC,∠CAD=∠BAD=30°,AB=AC,則DB=CD,易得;由于∠C1AB1=60°,得∠B1=30°,則AB1=2AC1,同理可得到DB1=2DC1,易得;
(2)過(guò)B點(diǎn)作BE∥AC交AD的延長(zhǎng)線于E點(diǎn),根據(jù)平行線的性質(zhì)和角平分線的定義得到∠E=∠CAD=∠BAD,則BE=AB,并且根據(jù)相似三角形的判定得△EBD∽△ACD,得到,而BE=AB,于是有,這實(shí)際是三角形的角平分線定理;
(3)AD為△ABC的內(nèi)角角平分線,由(2)的結(jié)論,根據(jù)相似三角形的判定得△DEF∽△ACF,利用相似三角形的性質(zhì)解答即可.
解:(1) 等邊△ABC中,線段AD為其內(nèi)角角平分線,
因?yàn)?/span>B1C1⊥AC于C1交AB的延長(zhǎng)線于B1,
∠CAB=60°,∠B1=∠CAD=∠BAD=30°,
AD=B1D,
綜上:這兩個(gè)等式都成立;
(2)可以判斷結(jié)論仍然成立,證明如下:
如圖所示,△ABC為任意三角形,過(guò)B點(diǎn)作BE∥AC交AD的延長(zhǎng)線于E點(diǎn),
線段AD為其內(nèi)角角平分線
∠E=∠CAD=∠BAD,△EBD∽△ACD
∴BE=AB,
又∵BE=AB.
∴,
即對(duì)任意三角形結(jié)論仍然成立;
(3)如圖(2)所示,因?yàn)?/span>Rt△ABC中,∠ACB=90°,AC=8,,
∵AD為△ABC的內(nèi)角角平分線,
∴
∵DE∥AC,
∵DE∥AC,
∴△DEF∽△ACF,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生課余生活,引領(lǐng)學(xué)生多讀書(shū)、會(huì)讀書(shū)、讀好書(shū),重慶一中聘請(qǐng)了西南師大教授講授“詩(shī)歌賞析”.為激勵(lì)學(xué)生積極參與,凡聽(tīng)課者每人發(fā)了一張帶號(hào)碼的入場(chǎng)券,授課結(jié)束后將進(jìn)行抽獎(jiǎng)活動(dòng).設(shè)立一等獎(jiǎng)一名,獲100元購(gòu)書(shū)卡,二等獎(jiǎng)3名分別獲50元購(gòu)書(shū)卡,三等獎(jiǎng)6名分別獲價(jià)值20元的書(shū)一本,紀(jì)念獎(jiǎng)若干分別獲價(jià)值2元的筆一支.工作人員對(duì)聽(tīng)課學(xué)生人數(shù)情況進(jìn)行了統(tǒng)計(jì),繪制了如下統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上信息解答下列問(wèn)題
(1)這次授課共 名學(xué)生參加,扇形圖中的a= ,b= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)學(xué)校共花費(fèi)570元設(shè)獎(jiǎng),則本次活動(dòng)中獎(jiǎng)的概率是多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心在坐標(biāo)原點(diǎn)的⊙O,與坐標(biāo)軸的交點(diǎn)分別為A、B和C、D.弦CM交OA于P,連結(jié)AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的兩根.
(1)求C點(diǎn)的坐標(biāo);
(2)寫(xiě)出直線CM的函數(shù)解析式;
(3)求△AMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c的對(duì)稱軸為直線x=﹣,與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C,點(diǎn)D為線段AC的中點(diǎn),直線BD與拋物線交于另一點(diǎn)E,與y軸交于點(diǎn)F.
(1)求拋物線的解析式;
(2)點(diǎn)P是直線BE上方拋物線上一動(dòng)點(diǎn),連接PD、PF,當(dāng)△PDF的面積最大時(shí),在線段BE上找一點(diǎn)G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.
(3)如圖2,點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N在拋物線的對(duì)稱軸上,點(diǎn)K為平面內(nèi)一點(diǎn),當(dāng)以A、M、N、K為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】爸爸沿街勻速行走,發(fā)現(xiàn)每隔7分鐘從背后駛過(guò)一輛103路公交車(chē),每隔5分鐘從迎面駛來(lái)一輛103路公交車(chē),假設(shè)每輛103路公交車(chē)行駛速度相同,而且103路公交車(chē)總站每隔固定時(shí)間發(fā)一輛車(chē),那么103路公交車(chē)行駛速度是爸爸行走速度的__倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.
(1)求證:△ABC是等腰三角形;
(2)當(dāng)OA=4,AB=6,求邊BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書(shū)法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為、、.
(1)經(jīng)過(guò)怎樣的平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,并直接寫(xiě)出此時(shí)點(diǎn)C 的對(duì)應(yīng)點(diǎn)坐標(biāo);(不必畫(huà)出平移后的三角形);
(2)將△ABC繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,畫(huà)出△A′B′C′;
(3)在(2)問(wèn)的條件下,求線段BC掃過(guò)的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com