【題目】如圖,點C是線段AB上除點A,B外的任意一點,分別以AC,BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:BD=AE.
(2)求證:△NMC是等邊三角形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)先由△ACD和△BCE是等邊三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB,根據(jù)SAS定理可知△ACE≌△DCB,然后由全等三角形的性質(zhì)即可得出結(jié)論;
(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根據(jù)∠ACD=∠ECB=60°,A、C、B三點共線可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根據(jù)∠MCN=60°可知△MCN為等邊三角形.
證明:(1)∵△ACD和△BCE是等邊三角形,
∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,
∵∠DCA=∠ECB=60°,
∴∠DCA+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB,
在△ACE與△DCB中,
.
∴△ACE≌△DCB(SAS),
∴AE=BD;
(2)∵由(1)得,△ACE≌△DCB,
∴∠CAM=∠CDN,
∵∠ACD=∠ECB=60°,而A.C.B三點在同一條直線上,
∴∠DCN=60°,
在△ACM與△DCN中,
∵∠MAC=∠NDC,AC=DC,∠ACM=∠DCN=60°,
∴△ACM≌△DCN(ASA),
∴MC=NC,
∵∠MCN=60°,
∴△MCN為等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校七年級學生的英語口語水平,隨機抽取該年級部分學生進行英語口語測試,學生的測試成績按標準定為 A、B、C、D 四個等級,并把測試成績繪成如圖所示的兩個統(tǒng)計圖表.
七年級英語口語測試成績統(tǒng)計表
成績x(分) | 等級 | 人數(shù) |
x≥90 | A | 12 |
75≤x<90 | B | m |
60≤x<75 | C | n |
x<60 | D | 9 |
請根據(jù)所給信息,解答下列問題:
(1)本次被抽取參加英語口語測試的學生共有多少人?
(2)求扇形統(tǒng)計圖中 C 級的圓心角度數(shù);
(3)若該校七年級共有學生 640人,根據(jù)抽樣結(jié)課,估計英語口語達到 B級以上(包括B 級)的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+4與x軸、y軸分別交于點A、點B,點D在y軸的負半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求AB的長和點C的坐標;
(2)求直線CD的解析式;
(3)y軸上是否存在一點P,使得S△PAB=,若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弧AE=弧BD,BE⊥DC交DC的延長線于點E.
(1)求證:∠1=∠BCE;
(2)求證:BE是⊙O的切線;
(3)若EC=1,CD=3,求cos∠DBA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點O為坐標原點,直線y=-x+4與x軸交于點A,與y軸交于點B.
(1)求點A,B的坐標;
(2)在直線AB上是否存在點P,使△OAP是以OA為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若將Rt△AOB折疊,使OB邊落在AB上,點O與點D重合,折痕為BC,求點C的坐標。
(4)直接寫出折痕BC所在直線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》中有一道“蕩秋干”的問題,其譯文為:“有一架秋千,當它靜止時,踏板上一點A離地1尺,將它往前推送10尺(水平距離)時,點A對應(yīng)的點B就和某人一樣高,若此人的身高為5尺,秋干的繩索始終拉得很直,試問繩素有多長?”根據(jù)上述條件,秋干繩索長為________尺.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com