【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有( 。

A. 4個 B. 3個 C. 2個 D. 1個

【答案】A

【解析】利用拋物線與y軸的交點位置得到c>0,利用對稱軸方程得到b=﹣2a,則2a+b+c=c>0,于是可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點在點(﹣1,0)右側(cè),則當x=﹣1時,y<0,于是可對②進行判斷;根據(jù)二次函數(shù)的性質(zhì)得到x=1時,二次函數(shù)有最大值,則ax2+bx+c≤a+b+c,于是可對③進行判斷;由于直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,利用函數(shù)圖象得x=3時,一次函數(shù)值比二次函數(shù)值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,則可對④進行判斷.

∵拋物線與y軸的交點在x軸上方,

c>0,

∵拋物線的對稱軸為直線x=﹣=1,

b=﹣2a,

2a+b+c=2a﹣2a+c=c>0,所以①正確;

∵拋物線與x軸的一個交點在點(3,0)左側(cè),

而拋物線的對稱軸為直線x=1,

∴拋物線與x軸的另一個交點在點(﹣1,0)右側(cè),

∴當x=﹣1時,y<0,

a﹣b+c<0,所以②正確;

x=1時,二次函數(shù)有最大值,

ax2+bx+c≤a+b+c,

ax2+bx≤a+b,所以③正確;

∵直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,

x=3時,一次函數(shù)值比二次函數(shù)值大,

9a+3b+c<﹣3+c,

b=﹣2a,

9a﹣6a<﹣3,解得a<﹣1,所以④正確,

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】今年學校舉行足球聯(lián)賽,共賽17輪(即每隊均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負1場得0分.在這次足球比賽中,小虎足球隊得16分,且踢平場數(shù)是所負場數(shù)的整數(shù)倍,則小虎足球隊所負場數(shù)的情況有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計圖,其中MN是水平線,MNAD,ADDE,CFAB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點CDE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高   米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),豐富課余生活,決定開設(shè)以下體育課外活動項目:A.籃球,B.乒乓球,C.羽毛球,D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次被調(diào)查的學生共有   人,在扇形統(tǒng)計圖中B區(qū)域的圓心角度數(shù)為 ;

2)請你將條形統(tǒng)計圖補充完整;

3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,學校決定從這四名同學中任選兩名參加市乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC邊上一點,EAD的中點,過點ABC的平行線交BE的延長線于F,且AF=CD,連接CF.

(1)求證:△AEF≌△DEB;

(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情期間的某一天,“建鄴云課堂”為學生提供了語文、數(shù)學、英語三個學科各一節(jié)微課,甲、乙兩名同學隨機選擇一節(jié)微課自主學習.

1)甲同學選擇數(shù)學微課的概率是 ;

2)求甲、乙兩名同學選擇同一學科微課的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O與⊙P相交于A、B兩點,點P在⊙O上,⊙O的弦AC切⊙P于點A,CP及其延長線交⊙PD、E,經(jīng)過EEFCECB的延長線于F

⑴求證:BC是⊙P的切線;

⑵若CD=2CB=,求EF的長;

⑶若設(shè)k=PECE,是否存在實數(shù)k,使△PBD恰好是等邊三角形?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為4,延長使,以為邊在上方作正方形,延長,連接、,的中點,連接分別與、交于點.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案