【題目】如圖,已知四邊形ABCD中,∠C=90°,點P是CD邊上的動點,連接AP,E,F(xiàn)分別是AB,AP的中點,當點P在CD上從點D向點C移動過程中,下列結論成立的是(
A.線段EF的長先減小后增大
B.線段EF的長不變
C.線段EF的長逐漸增大
D.線段EF的長逐漸減小

【答案】D
【解析】解:連接BD,BP, ∵E,F(xiàn)分別是AB,AP的中點,
∴EF是△ABP的中位線,
∴EF= BP,
∵點P在CD上從點D向點C移動過程中,BD>BP,
∴線段EF的長逐漸減小.
故選D.

【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋中裝有2個黃球和2個紅球,它們除顏色外沒有其他區(qū)別,從袋中任意摸出一個球,然后放加攪勻,再從袋中任意摸一個球,那么兩次都摸到黃球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

請結合圖表完成下列各題:

(1)①求表中a的值;②頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一拋物線型拱橋,當拱頂?shù)剿娴木嚯x為2米時,水面寬度為4米;那么當水位下降1米后,水面的寬度為米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,鏈接BM

(1)菱形ABCO的邊長
(2)求直線AC的解析式;
(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,
①當0<t< 時,求S與t之間的函數(shù)關系式;
②在點P運動過程中,當S=3,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD為⊙O的弦,連接AC、BD,半徑CO交BD于點E,過點C作切線,交AB的延長線于點F,且∠CFA=∠DCA.
(1)求證:OE⊥BD;
(2)若BE=2,CE=1 ①求⊙O的半徑;
②求△ACF的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為6的⊙O內(nèi)有兩條互相垂直的弦AB和CD,AB=8,CD=6,垂足為E.則tan∠OEA的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線y=﹣ x2 x+2 與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 , 點A的坐標為 , 點B的坐標為;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案