(2006•濟(jì)南)如圖1,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A作AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長;
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由;
(3)如圖2,過點(diǎn)C作CD⊥AE,垂足為D.以點(diǎn)A為圓心,r為半徑作⊙A;以點(diǎn)C為圓心,R為半徑作⊙C.若r和R的大小是可變化的,并且在變化過程中保持⊙A和⊙C相切,且使D點(diǎn)在⊙A的內(nèi)部,B點(diǎn)在⊙A的外部,求r和R的變化范圍.

【答案】分析:(1)根據(jù)已知,可判定△APE∽△CPB,從而得到相似比為PA:PC=AE:BC=3:1;
(2)BE與⊙A相切,通過已知,可求得∠ABE=60°,從而可得到∠APB=90°,即BE與⊙A相切;
(3)已知AD=5,AB=5,所以r的變化范圍為5<r<5.因?yàn)闆]有說明兩圓是內(nèi)切還是外切,所以分兩種情況進(jìn)行分析.
解答:解:(1)∵在Rt△ABC中,∠CAB=30°,BC=5,
∴AC=2BC=10;
∵AE∥BC,
∴△APE∽△CPB,
∴PA:PC=AE:BC=3:1,
∴PA:AC=3:4,PA=

(2)BE與⊙A相切;
∵在Rt△ABE中,AB=5,AE=15,
∴tan∠ABE=,
∴∠ABE=60°;
又∵∠PAB=30°,
∴∠ABE+∠PAB=90°,
∴∠APB=90°,
∴BE⊥AP
∴BE與⊙A相切;

(3)因?yàn)锳D=5,AB=5,所以r的變化范圍為5<r<5;
當(dāng)⊙A與⊙C外切時(shí),R+r=10,所以R的變化范圍為10-<R<5;
當(dāng)⊙A與⊙C內(nèi)切時(shí),R-r=10,所以R的變化范圍為15<R<10+5
點(diǎn)評(píng):本題主要考查切線性質(zhì)、圓與圓的位置關(guān)系等知識(shí).第3小題注意要分類,試題中只說明了“⊙A和⊙C相切”,很多同學(xué)漏解,往往是由于沒有仔細(xì)讀題和審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2006•濟(jì)南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(0,4).將矩形OABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使B點(diǎn)落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點(diǎn)M.
(1)求點(diǎn)B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點(diǎn)M1,點(diǎn)P運(yùn)動(dòng)到C點(diǎn)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),平移后的矩形為PA3B3C3.請(qǐng)你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請(qǐng)簡述你的做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2006•濟(jì)南)如圖,L1是反比例函數(shù)y=在第一象限內(nèi)的圖象,且過點(diǎn)A(2,1),L2與L1關(guān)于x軸對(duì)稱,那么圖象L2的函數(shù)解析式為    (x>0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)模擬檢測(cè)試卷(2)(解析版) 題型:填空題

(2006•濟(jì)南)如圖,L1是反比例函數(shù)y=在第一象限內(nèi)的圖象,且過點(diǎn)A(2,1),L2與L1關(guān)于x軸對(duì)稱,那么圖象L2的函數(shù)解析式為    (x>0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟(jì)南市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•濟(jì)南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(0,4).將矩形OABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使B點(diǎn)落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點(diǎn)M.
(1)求點(diǎn)B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點(diǎn)M1,點(diǎn)P運(yùn)動(dòng)到C點(diǎn)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),平移后的矩形為PA3B3C3.請(qǐng)你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請(qǐng)簡述你的做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟(jì)南市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•濟(jì)南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(0,4).將矩形OABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使B點(diǎn)落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點(diǎn)M.
(1)求點(diǎn)B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點(diǎn)M1,點(diǎn)P運(yùn)動(dòng)到C點(diǎn)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),平移后的矩形為PA3B3C3.請(qǐng)你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請(qǐng)簡述你的做法.

查看答案和解析>>

同步練習(xí)冊(cè)答案