已知拋物線 a≠0)的對稱軸是直線l,頂點為點M.若自變量x和函數(shù)值y1的部分對應(yīng)值如下表所示:

x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過點T(0,t)作垂直于y軸的直線l′,A為直線l′上的動點,線段AM的垂直平分線交直線l于點B,點B關(guān)于直線AM的對稱點為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當x取任意實數(shù)時,若對于同一個x,有y1<y2恒成立,求t的取值范圍.

解:(1)∵拋物線經(jīng)過點(0,),∴c=!。
∵點(-1,0)、(3,0)在拋物線上,
,解得。
∴y1與x之間的函數(shù)關(guān)系式為:
(2)∵,∴。
∴直線l為x=1,頂點M(1,3).
①由題意得,t≠3,
如圖,記直線l與直線l′交于點C(1,t),

當點A′與點C不重合時,
∵由已知得,AM與BP互相垂直平分,
∴四邊形ANMP為菱形。∴PA∥l。
又∵點P(x,y2),∴點A(x,t)(x≠1)!
過點P作PQ⊥l于點Q,則點Q(1,y2),∴,
在Rt△PQM中,∵,即。
整理得,,即。
當點A與點C重合時,點B與點P重合,
∴P(1,)!郟點坐標也滿足上式。
∴y2與x之間的函數(shù)關(guān)系式為(t≠3)。
②根據(jù)題意,借助函數(shù)圖象:
當拋物線y2開口方向向上時,6-2t>0,即t<3時,拋物線y1的頂點M(1,3),拋物線y2的頂點(1,),
∵3>,∴不合題意。
當拋物線y2開口方向向下時,6-2t<0,即t>3時,
,
若3t-11≠0,要使y1<y2恒成立,只要拋物線開口方向向下,且頂點(1,)在x軸下方,
∵3-t<0,只要3t-11>0,解得t>,符合題意。
若3t-11=0,,即t=也符合題意。
綜上所述,可以使y1<y2恒成立的t的取值范圍是t≥。

解析試題分析:(1)先根據(jù)物線經(jīng)過點(0, )得出c的值,再把點(-1,0)、(3,0)代入拋物線y1的解析式即可得出y1與x之間的函數(shù)關(guān)系式。
(2)先根據(jù)(I)中y1與x之間的函數(shù)關(guān)系式得出頂點M的坐標.
①記直線l與直線l′交于點C(1,t),當點A′與點C不重合時,由已知得,AM與BP互相垂直平分,故可得出四邊形ANMP為菱形,所以PA∥l,再由點P(x,y2)可知點A(x,t)(x≠1),所以,過點P作PQ⊥l于點Q,則點Q(1,y2),故,,在Rt△PQM中,根據(jù)勾股定理即可得出y2與x之間的函數(shù)關(guān)系式,再由當點A與點C重合時,點B與點P重合可得出P點坐標,故可得出y2與x之間的函數(shù)關(guān)系式。
②據(jù)題意,借助函數(shù)圖象:
當拋物線y2開口方向向上時,可知6-2t>0,即t<3時,拋物線y1的頂點M(1,3),拋物線y2的頂點(1, ),由于3>,所以不合題意。
當拋物線y2開口方向向下時,6-2t<0,即t>3時,求出的值。若3t--11≠0,要使y1<y2恒成立,只要拋物線方向向下及且頂點(1, )在x軸下方,因為3-t<0,只要3t-11>0,解得t>,符合題意;若3t-11=0,,即t=也符合題意。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C(0,4),頂點為(1,).

(1)求拋物線的函數(shù)表達式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標.
(3)如圖2,若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EF∥AC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.
九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當天收入=日銷售額日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(12分)某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用。根據(jù)規(guī)定,每個房間每天的房價不得高于340元。設(shè)每個房間的房價每天增加x元(x為10的正整數(shù)倍)。
(1) 設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2) 設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3) 一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點A,B(點A位于點B的左側(cè)),與y軸的負半軸交于點C,點A的坐標為(-1,0).

(1)b=    ,點B的橫坐標為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過點A作直線AE∥BC,與拋物線交于點E.點D是x軸上一點,其坐標為
(2,0),當C,D,E三點在同一直線上時,求拋物線的解析式;
(3)在(2)的條件下,點P是x軸下方的拋物線上的一動點,連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.

(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(       ,       );
依此類推第n條拋物線yn的頂點坐標為(       ,       );
所有拋物線的頂點坐標滿足的函數(shù)關(guān)系是       
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在坐標系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線的圖象過C點.

(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當l移動到何處時,恰好將△ABC的面積分為相等的兩部分?
(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案