【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx+b(k≠0)與軸交于點(diǎn)A(-2.0),與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:
(2)若直線(xiàn)AB與y軸的交點(diǎn)為C.求△OCB的面積
(3)根據(jù)圖象,直接寫(xiě)出當(dāng)x>0時(shí),不等式>kx+b的解集.
【答案】(1)y=,y=x+2;(2)S△OCB=2;(3)0<x<2.
【解析】
|(1)先由A(-2,0),得OA=2,點(diǎn)B(2,n),S△AOB=4,得OAn=4,n=4,則點(diǎn)B的坐標(biāo)是(2,4),把點(diǎn)B(2,4)代入反比例函數(shù)的解析式為y=,可得反比例函數(shù)的解析式為:y=;再把A(-2,0)、B(2,4)代入直線(xiàn)AB的解析式為y=kx+b可得直線(xiàn)AB的解析式為y=x+2;
(2)把x=0代入直線(xiàn)AB的解析式y=x+2得y=2,即OC=2,可得S△OCB=OC×2=×2×2=2;
(3)根據(jù)圖象,可知不等式>kx+b的解集0<x<2.
解:(1)由A(-2,0),得OA=2;
∵點(diǎn)B(2,n)在第一象限內(nèi),S△AOB=4,
∴OAn=4;
∴n=4;
∴點(diǎn)B的坐標(biāo)是(2,4);
將點(diǎn)B的坐標(biāo)(2,4)代入反比例函數(shù),得,
∴m=8;
∴反比例函數(shù)的解析式為:y=;
將點(diǎn)A(2,0),B(2,4)的坐標(biāo)分別代入y=kx+b,得 ,
解得;
∴一次函數(shù)的表達(dá)式y=x+2.
(2)在y=x+2中,令x=0,得y=2,
∴點(diǎn)C的坐標(biāo)是(0,2),
∴OC=2,
∴S△OCB=×2×2=2.
(3)由于B點(diǎn)坐標(biāo)為(2,4),可知不等式的解集0<x<2.
故答案為(1)y=,y=x+2;(2)S△OCB=2;(3)0<x<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知內(nèi)接于圓,點(diǎn)為弧上一點(diǎn),連接交于點(diǎn),.
(1)如圖1,求證:弧弧;
(2)如圖2,過(guò)作于點(diǎn),交圓點(diǎn),連接交于點(diǎn),且,求的度數(shù);
(3)如圖3,在(2)的條件下,圓上一點(diǎn)與點(diǎn)關(guān)于對(duì)稱(chēng),連接,交于點(diǎn),點(diǎn)為弧上一點(diǎn),交于點(diǎn),交的延長(zhǎng)線(xiàn)于點(diǎn),,的周長(zhǎng)為20,,求圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式組無(wú)解,且關(guān)于y的分式方程有非正整數(shù)解,則符合條件的所有整數(shù)k的值之和為( 。
A.﹣7B.﹣12C.﹣20D.﹣34
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形的邊在軸上,點(diǎn)的坐標(biāo)為,點(diǎn)是對(duì)角線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)在軸上,當(dāng)最短時(shí),點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng).到達(dá)點(diǎn)D即停止,若E、F分別是AP、BP的中點(diǎn),設(shè)CP=x,△PEF的面積為y,且y與x之間的函數(shù)關(guān)系的圖象如圖乙所示,則線(xiàn)段AB長(zhǎng)為( )
A.2B.2C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)摩天輪,它共有8個(gè)座艙,依次標(biāo)為1~8號(hào),摩天輪中心O的離地高度為50米,摩天輪中心到各座艙中心均相距25米,在運(yùn)行過(guò)程中,當(dāng)1號(hào)艙比3號(hào)艙高5米時(shí),1號(hào)艙的離地高度為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,進(jìn)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為100元/m2.
(1)請(qǐng)直接寫(xiě)出當(dāng)0≤x≤300和x>300時(shí),y與x的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,如果甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?
(3)在(2)的條件下,若種植總費(fèi)用不小于123000元,求出甲種花卉種植面積的范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m<0.
(1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖2,設(shè)拋物線(xiàn)y=a(x﹣m+6)2+h經(jīng)過(guò)A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在同一直角坐標(biāo)系xOy中,有雙曲線(xiàn),直線(xiàn)y2=k2x+b1,y3=k3x+b2,且點(diǎn)A(2,5),點(diǎn)B(﹣6,n)在雙曲線(xiàn)的圖象上
(1)求y1和y2的解析式;
(2)若y3與直線(xiàn)x=4交于雙曲線(xiàn),且y3∥y2,求y3的解析式;
(3)直接寫(xiě)出的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com