【題目】某批發(fā)商計劃將一批海產品由A地運往B地.汽車貨運公司和鐵路貨運公司均開辦海產品運輸業(yè)務.已知運輸路程為120千米,汽車和火車的速度分別為60千米/時、100千米/時.兩貨運公司的收費項目及收費標準如下表所示:

運輸工具

運輸費單價/

(元/噸·千米)

冷藏費單價/

(元/噸·小時)

過路費/元

裝卸及管理費/元

2

5

200

0

1.8

5

0

1600

注:“元/噸·千米”表示每噸貨物每千米的運費;“元/噸·小時”表示每噸貨物每小時的冷藏費.

(1)設該批發(fā)商待運的海產品有x(),汽車貨運公司和鐵路貨運公司所要收取的費用分別為y1()y2(),試求y1、y2x之間的函數(shù)關系式.

(2)若該批發(fā)商待運的海產品不少于30噸,為節(jié)省運費,他應選擇哪個貨運公司承擔運輸業(yè)務?

【答案】(1)y1=250x+200、y2=222x+1 600 ;(2)50噸以下選汽車,50噸以上選火車,50噸時費用相同

【解析】試題分析:

(1)根據(jù)表格中提供的數(shù)據(jù)按題中所給數(shù)量關系列出兩個函數(shù)關系式即可;

2根據(jù)(1)中所得函數(shù)解析式,分別由列出對應的不等式和方程,解不等式和方程即可求得本題答案.

試題解析

1)由題意可得: ,即;

,即;

2得: ,解得: ;

可得: ,解得:

可得: ,解得:

當運送量少于50噸時,選汽車運輸;當運送量為50噸時,兩種運輸方式花費一樣多;的運送量多于50噸時,選火車運輸更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點坐標為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點為A,M是這個二次函數(shù)圖象上的點,O是原點.

1)不等式b+2c+8≥0是否成立?請說明理由;

2)設SAMO的面積,求滿足S=9的所有點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

12x2-8x=0;

2x2-3x4=0

求出拋物線的開口方向、對稱軸、頂點坐標.

3y=x2x+3(公式法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,舉行抽獎活動,并規(guī)定:顧客每購買100元的商品,就可以隨機抽取一張獎券,抽得獎券“紫氣東來”、“化開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈購物券;如果顧客不愿意抽獎,可以直接獲得購物券10元,小明購買了100元的商品,他看到商場公布的前10000張獎券的抽獎結果如下:

獎券種類

紫氣東來

化開富貴

吉星高照

謝謝惠顧

出現(xiàn)張數(shù)(張)

500

1000

2000

6500

(1)求“紫氣東來”獎券出現(xiàn)的頻率;

(2)請你幫助小明判斷,抽獎和直接獲得購物券,哪種方式更合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長為2的正方形ABCD關于y軸對稱,邊ADx軸上,點B在第四象限,直線BD與反比例函數(shù)的圖象交于點B、E.

1)求反比例函數(shù)及直線BD的解析式;

2)求點E的坐標;

3)連結、、,求△的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一塊直角三角形的綠地,量得兩直角邊長分別為6 m,8 m,現(xiàn)在要將綠地擴充成等腰三角形,且擴充部分是以8 m為直角邊的直角三角形,求擴充后等腰三角形綠地的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列證明過程填空:

如圖,BDAC,EFAC,D、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C

證明:∵BDAC,EFAC

∴∠2=∠3=90°

BDEF ( )

∴∠4=_____ ( )

∵∠1=∠4

∴∠1=_____

DGBC ( )

∴∠ADG=∠C( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀再解答:我們已經知道,根據(jù)幾何圖形的面積關系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:

(2a+b)(a+b)=2a2+3ab+b2,就可以用圖的面積關系來說明.

(1)根據(jù)圖寫出一個等式:        ;

(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個相應的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ACB=90°,BC>AC,以斜邊AB 所在直線為x,以斜邊AB上的高所在直線為y,建立直角坐標系,OA2+OB2= 17, 且線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根.

(1)C點的坐標;

(2)以斜邊AB為直徑作圓與y軸交于另一點E,求過A、BE 三點的拋物線的關系式,并畫出此拋物線的草圖.

(3)在拋物線上是否存在點P,使ABPABC全等?若存在,求出符合條件的P點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案