【題目】如圖①,直線分別與軸、軸交于點,,拋物線經過,兩點,且與軸的另一交點為.
(1)求拋物線的函數解析式;
(2)如圖①,點在第三象限內的拋物線上.
①連接,,,當四邊形的面積最大時,求點的坐標;
②為軸上一點,當取得最小值時,求點的坐標;
(3)如圖②,為軸下方拋物線上任意一點,是拋物線的對稱軸與軸的交點,直線,分別交拋物線的對稱軸于點,.問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
【答案】(1)y=x2+2x-3;(2)①,②;(3)DM+DN是定值,定值為8.
【解析】
(1)由直線表達式求出點B、C的坐標,將A、B、C坐標代入拋物線表達式,即可求解;
(2)①S四邊形ABPC=S△BPC+S△ABC=PFOB+ABOC= (-t2-3t)+6=(t+)2+,即可求解;②當GJ=AG時,PG+AG取得最小值,即可求解;
(3)利用,,得,,即,,即可求解.
解:(1)在y=-x-3中,令x=0,得y=-3;令y=0,得x=-3,
∴B(-3,0),C(0,-3).
設拋物線的函數解析式為y=a(x+3)(x-1),
將點C(0,-3)代入,得a=1,
∴拋物線的函數解析式為y=x2+2x-3;
(2)①如圖①,過點P作PE⊥x軸于點E,交BC于點F,設點P的坐標為(t,t2+2t-3),則點F的坐標為(t,-t-3),
∴PF=-t-3-(t2+2t-3)=-t2-3t,
∴S四邊形ABPC=S△BPC+S△ABC=PF·OB+AB·OC=(-t2-3t)+6=.
∵<0,
∴當t=時,S四邊形ABPC取得最大值,
∴此時點P的坐標為;
②如圖②,作點P關于x軸的對稱點,交x軸于點I,連接AP,,過點P作PJ⊥于點J,交x軸于點G.當GJ=AG時,PG+AG取得最小值,此時sin∠GAJ=,
∴tan∠GAJ=.
設點P的坐標為(t,t2+2t-3),則PI=-t2-2t+3,AI=-t+1,
由對稱的性質,得∠PAI=∠GAJ,
∴tan∠PAI=,即,
解得t1=,t2=1(舍去),
∴此時點P的坐標為;
(3)DM+DN是定值.
解法一:如圖③,過點Q作QH⊥x軸于點H.
∵ND⊥x軸,
∴QH∥ND,
∴,,
∴,.
設點Q的坐標為(k,k2+2k-3),則HQ=-k2-2k+3,BH=3+k,AH=1-k.
∵D是拋物線的對稱軸與x軸的交點,
∴AD=BD=2,
∴,,
∴DN=2-2k,DM=2k+6,
∴DM+DN=2k+6+2-2k=8,
∴DM+DN是定值,該定值為8.
解法二:∵拋物線y=x2+2x-3的對稱軸為x=-1,
∴D(-1,0),則xM=xN=-1.
設點Q的坐標為(k,k2+2k-3),
設直線AQ的解析式為y=dx+e,則,解得,
∴直線AQ的解析式為y=(k+3)x-k-3,
當x=-1時,y=-2k-6,
∴DM=2k+6.
設直線BQ的解析式為y=mx+n,則,解得,
∴直線BQ的解析式為y=(k-1)x+3k-3,
當x=-1時,y=2k-2,
∴DN=-2k+2,
∴DM+DN=2k+6+(-2k+2)=8,
∴DM+DN是定值,該定值為8.
科目:初中數學 來源: 題型:
【題目】五張正面分別寫有數字:﹣3,﹣2,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數字的絕對值不小于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數字作為m的值,然后再從剩余的卡片中隨機抽一張,以其正面的數字作為n的值,請用列表法或畫樹狀圖法,求點Q(m,n)在第四象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線與x軸相交于A、B兩點(A左B右),與y軸交于點C.其頂點為D.
(1)求點D的坐標和直線BC對應的一次函數關系式;
(2)若正方形PQMN的一邊PQ在線段AB上,另兩個頂點M、N分別在BC、AC上,試求M、N兩點的坐標;
(3)如圖1,E是線段BC上的動點,過點E作DE的垂線交BD于點F,求DF的最小值.
(圖1) (圖2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在信息快速發(fā)展的新時代,“信息消費”已成為人們生活的重要部分.為了解某社區(qū)居民每月信息消費的情況,學校社會實踐小組到該社區(qū)隨機調查了部分住戶2019年7月的信息消費金額,并將手機到的數據整理成不完整統(tǒng)計圖(圖9.1、圖9.2).
請結合圖中相關數據回答下列問題.
(1)本次調查樣本的容量是______;
(2)D組的頻數是______,E組的頻率是______,B組所對應扇形的圓心角為______度;
(3)在調查的住戶中,當月信息消費金額的中位數出現(xiàn)在______組;
(4)若該社區(qū)有1500戶住戶,估計當月信息消費額不少于300元的約有______戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年,新型冠狀病毒席卷全球,疫情當前,全國上下砥礪同行.某中學校指導中心為引導未成年人以健康心理、陽光心態(tài)抗擊疫情,積極開展了心理援助工作,并推出“你是我的奧特曼”有獎征稿活動.活動結束后,該指導中心對參賽學生的獲獎情況進行統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
結合圖中的相關數據,解答下列問題:
(1)參加此次有獎征稿活動的學生有 人,在扇形統(tǒng)計圖中,“三等獎”所對應扇形的圓心角度數為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)若獲得“一等獎”的學生中有來自七年級,來自九年級,其余來自八年級,學校決定從獲得“一等獎”的學生中任選2名作為代表在線上分享心靈戰(zhàn)“疫”小錦囊,請用列表或畫樹狀圖的方法求所選2名學生中恰好是1名七年級和1名九年級學生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數關系式;
(2)設種植的總成本為w元,
①求w與x之間的函數關系式;
②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標有數字 1, 2, 3, 4 的 4 個小球放入一個不透明的袋子中,這些球除數字外都相同.從中隨機摸出一個球記下數字后放回,再從中隨機摸出一個球記下數字.若兩次數字差的絕對值小于 2,則小明獲勝,否則小剛獲勝.這個游戲對兩人公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線y=x-1交x軸、y軸于A、B點,點P(1,,且S四邊形PAOB=3.5,雙曲線y=經過點P.
(1)求k的值;
(2)如圖2,直線)交射線BA于E,交雙曲線y=于F,將直線向右平移4個單位長度后交射線于,交雙曲線y=于,若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,點E,F分別是BC,AD的中點.
(1)求證:;
(2)當與滿足什么數量關系時,四邊形是正方形?請證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com