如圖,PAPB分別與⊙O相切于點A、B,⊙O的切線EF分別交PA、PB于點EF,切點C上,若PA長為2,則△PEF的周長是_      _
4

分析:由切線長定理知,AE=CE,F(xiàn)B=CF,PA=PB=2,然后根據(jù)△PEF的周長公式即可求出其結果.
解:∵PA、PB分別與⊙O相切于點A、B,
⊙O的切線EF分別交PA、PB于點E、F,切點C在上,
∴AE=CE,F(xiàn)B=CF,PA=PB=2,
∴△PEF的周長=PE+EF+PF=PA+PB=4.
故填空答案:4.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題6分)如圖,小麗自己動手做了一頂圓錐形的圣誕帽,母線長是30cm,底面半徑是10cm,她想在帽子上纏一根漂亮的絲帶,從A出發(fā)繞帽子側(cè)面一周回到 A;
(1)畫出該圓錐的側(cè)面展開圖,標出圓心角及半徑長;
(2)絲帶至少需多長?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知圓錐的底兩半徑為5cm,側(cè)面積為65π cm2,設圓錐的母線與高的夾角為,則sin的值為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題6分)如圖,AD、BC是⊙O的兩條弦,且AD=BC,
求證:AB=CD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O中,,,則等于(      )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過點B和點D的兩個動圓均與AC相切,且與AB、BC、AD、DC分別交于點G、H、E、F,則EF+GH的最小值是(   )

A.6                B.8           C.9.6              D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,,cosB.如果⊙O的半徑為cm,且經(jīng)過點BC,那么線段AO=    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

直線l上有一點到圓心O的距離等于⊙O的半徑,則直線l與⊙O的位置關系是(    )
A.相離B.相切C.相切或相交D.相交

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,,B點坐標為(4,0).點是邊上一點,且.點、分別從、同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)PAD于點Q.⊙E半徑為,設運動時間為秒。

(1)求直線BC的解析式。
(2)當為何值時,?
(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標。如果不相切,說明理由。

查看答案和解析>>

同步練習冊答案