精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,過⊙O外一點P作⊙O的兩條切線PC,PD,切點分別為C,D,連接OP,CD.

(1)求證:OP⊥CD;

(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.

【答案】(1)證明見解析;(2).

【解析】

(1)先判斷出RtODPRtOCP,得出∠DOP=COP,即可得出結論;

(2)先 求出∠COD=60°,得出OCD是等邊三角形,最后用銳角三角函數即可得出結論.

(1)證明:如圖,連接OC,OD,OC=OD.

PD,PC是⊙O的切線,

∴∠ODP=∠OCP90°.

RtODPRtOCP中,

,

RtODPRtOCP,

∴∠DOP=∠COP.

ODOC,

OPCD.

(2)連接AD,BC如圖所示,則OA=OD=OC=OB=2,

∴∠ADO=∠DAO50°

BCO=∠CBO70°,

∴∠AOD80°,∠BOC40°,

∴∠COD60°.

ODOC

∴△COD是等邊三角形.

(1)知,∠DOP=COP=30°,

RtODP中,OP=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要________個小立方塊.最終搭成的長方體的表面積是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關于x的方程的兩個實數根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為m2),種草所需費用1(元)與m2)的函數關系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數關系式為2=﹣0.012﹣20+300000≤≤1000).

(1)請直接寫出k1、k2和b的值;

(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與的函數關系式,求出綠化總費用W的最大值;

(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:

我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.

理解:

(1)如圖1,已知RtABC在正方形網格中,請你只用無刻度的直尺在網格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】深圳市某校九年級有500名學生,在體育考試前隨機抽取部分學生進行體能測試,成績分別記為A、B、C、D共四個等級,其中A級和B級成績?yōu)椤皟?yōu)”,將測試結果繪制成如下條形統計圖和扇形統計圖.

成績頻數條形統計圖 成績頻數扇形統計圖

(1)求抽取參加體能測試的學生人數;

(2)補全條形統計圖;

(3)估計該校九年級全體學生參加體能測試成績?yōu)椤皟?yōu)”的學生共有多少人?(精確到個位)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P是矩形ABCD下方一點,將PCD繞點P順時針旋轉60°后,恰好點D與點A重合,得到PEA,連接EB,問:ABE是什么特殊三角形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】9分)如圖所示,某數學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結果保留整數,參考數據:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).

(1)求直線y=kx+m的表達式;

(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點Px軸上一點,若AB=BP,直接寫出P點坐標.

查看答案和解析>>

同步練習冊答案