如圖,已知,,.求.
∠DAB=125°.
【解析】
試題分析:由題,有兩種思路,第一:求出已知三個(gè)外角的相鄰內(nèi)角,再用內(nèi)角和得到∠DAB的度數(shù),由鄰補(bǔ)角的定義得:∠ABC=180°-∠ABE=180°-138°=42°,∠BCD=∠180°-∠BCF=180°-98°=82°,∠CDA=180°-∠CDG=180°-69°=111°, 由四邊形的內(nèi)角和為360°得:∠DAB=360°-∠ABC-∠BCD-∠CDA =360°-42°-82°-111°=125°;第二:由四邊形的外角和為360°,可以求出第四個(gè)外角,然后由鄰補(bǔ)角得到∠DAB,由題設(shè)第四個(gè)外角為x,∠ABE+∠BCF+∠CDG+x=360°,得x=55°, ∠DAB=180°-x=125°.
試題解析:方法一: 由鄰補(bǔ)角的定義得:
∠ABC=180°-∠ABE=180°-138°=42°,
∠BCD=∠180°-∠BCF=180°-98°=82°,
∠CDA=180°-∠CDG=180°-69°=111°,
∵四邊形的內(nèi)角和為360°,
∴∠DAB=360°-∠ABC-∠BCD-∠CDA =360°-42°-82°-111°=125°.
方法二: 設(shè)第四個(gè)外角為x,
∵四邊形的外角和為360°,
∴∠ABE+∠BCF+∠CDG+x=360°,
x=55°,
∴∠DAB=180°-x=125°.
考點(diǎn):四邊形的內(nèi)角和與外角和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com