【題目】如圖,將△ABC繞點C順時針旋轉得到△DEC,使點A的對應點D恰好落在邊AB上,點B的對應點為E,連接BE,以下四個結論:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正確的是_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD與AE相交于F,DG交BC的,延長線于G,∠CFE=∠AEB
(1)若∠B=87°,求∠DCG的度數(shù);
(2)AD與BC是什么位置關系?并說明理由;
(3)若∠DAB=α,∠DGC=β,直接寫出α、β滿足什么數(shù)量關系時,AE∥DG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線 y1=kx+b 經過點 P(4,4)和點 Q(0,﹣4),與 x 軸交于點 A,與直線 y2=mx+n 交于點 P.
(1)求出直線 y1=kx+b 的解析式;
(2)求出點 A 的坐標;
(3)直線 y2=mx+n 繞著點 P 任意旋轉,與 x 軸交于點 B,當△PAB 是等腰三角形時,直接寫出點B 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量分別為45人/輛和30人/輛和租金分比為400元/輛和280元/輛:杏壇中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送八年級師生到基地參加社會實踐活動,若要保證租車費用不超過1900元,求A型客車的數(shù)量最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊三角形ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y=(x>0)相交于P(1,m).
(1)求k的值;
(2)若點Q與點P關于y=x成軸對稱,則點Q的坐標為Q( );
(3)若過P、Q兩點的拋物線與y軸的交點為N(0, ),求該拋物線的解析式,并求出拋物線的對稱軸方程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由:
如圖,CD∥EF,∠1=∠2,求證:∠3=∠ACB.
證明:∵CD∥EF,
∴∠DCB=∠2( ),
∵∠1=∠2,
∴∠DCB=∠1( ).
∴GD∥CB( ),
∴∠3=∠ACB( ).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com