精英家教網 > 初中數學 > 題目詳情

【題目】如圖,由兩個長為2,寬為1的長方形組成“7”字圖形.

1)將一個“7”字圖形按如圖擺放在平面直角坐標系中,記為“7”字圖形,其中頂點位于軸上,頂點,位于軸上,為坐標原點,則的值為____.

2)在(1)的基礎上,繼續(xù)擺放第二個“7”字圖形得頂點,擺放第三個“7”字圖形得頂點,依此類推,,擺放第“7”字圖形得頂點,,則頂點的坐標為_____.

【答案】1; 2

【解析】

1)根據題意可得,由同角的余角相等得,根據相似三角形判定得,由相似三角形性質即可求得答案.2)根據題意標好字母,根據題意可得,,,,在RtDCB中,由勾股定理求得

,由(1)知,從而可得,,,結合題意易得:,根據相似三角形性質可得,,,,從而可得,觀察這兩點坐標知由點到點橫坐標增加了,縱坐標增加了,依此可得出規(guī)律:的坐標為:,將n=2019代入即可求得答案.

1)依題可得,,,

,

,

又∵

,

;

2)根據題意標好字母,如圖,

依題可得:

,,

,

由(1)知

,

易得:

,

,,,,

,,

,,

∴由點到點橫坐標增加了,縱坐標增加了,

……

的坐標為:,

的坐標為:,

故答案為,.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正六邊形ABCDEF的對稱中心P在反比例函數的圖象上,邊CDx軸上,點By軸上.已知

1)點A是否在該反比例函數的圖象上?請說明理由.

2)若該反比例函數圖象與DE交于點Q,求點Q的橫坐標.

3)平移正六邊形ABCDEF,使其一邊的兩個端點恰好都落在該反比例函數的圖象上,試描述平移過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB⊙O的弦,過點OOC⊥OAOC交于ABP,且CP=CB

1)求證:BC⊙O的切線;

2)已知∠BAO=25°,點Q是弧AmB上的一點.

①求∠AQB的度數;

②若OA=18,求弧AmB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過專業(yè)知識、講課、答辯三項測試,他們各自的成績如下表所示:

應聘者

專業(yè)知識

講課

答辯

70

85

80

90

85

75

80

90

85

按照招聘簡章要求,對專業(yè)知識、講課、答辯三項賦權5:4:1.請計算三名應聘者的平均成績,從成績看,應該錄取誰?

(2)我市舉行了某學科實驗操作考試,有A、B、C、D四個實驗,規(guī)定每位學生只參加其中一個實驗的考試,并由學生自己抽簽決定具體的考試實驗.小王,小張,小厲都參加了本次考試.

①小厲參加實驗D考試的概率是   ;

②用列表或畫樹狀圖的方法求小王、小張抽到同一個實驗的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數為120個,乙商店所需數量不超過50個,設甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.

(1)求y關于的函數關系式,并寫出自變量的取值范圍;

(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;

(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調整:數量不超過100個時,價格不變;數量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數yaxaya≠0)在同一直角坐標系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為弘揚和傳承紅色文化,某校欲在暑假期間組織學生到A、B、CD四個基地開展研學活動,每個學生可從A、B、CD四個基地中選擇一處報名參加.小瑩調查了自己所在班級的研學報名情況,繪制成如圖所示的兩幅不完整的統(tǒng)計圖,其中扇形統(tǒng)計圖中A、D兩部分的圓心角度數之比為32.請根據圖中信息解答下列問題:

1)在這項調查中,共調查了多少名學生?

2)求去往A地和D地的人數,并補全條形統(tǒng)計圖;

3)小瑩和小亮分別從四個基地中隨機選一處前往,用樹狀圖或列表法求兩人前往不同基地的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】教材例1變式 已知扇形的半徑為6厘米,求下列扇形的面積和周長.()

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:的直徑,點上,連接、交于點,過點的切線交的延長于點,且于點.

(1)如圖,求證:;

(2)如圖,連接,點上,連接,若,求證:;

(3)如圖,在(2)的條件下,作于點,過點于點,連接,若, ,求線段的長.

查看答案和解析>>

同步練習冊答案