【題目】如圖,平行四邊形中,,過點于點,現(xiàn)將沿直線翻折至的位置,交于點.

1)求證:;

2)若,,求的長.

【答案】1)見解析;(2

【解析】

1)根據(jù)平行四邊形的性質(zhì)得ABCD,AB=CD,通過兩角對應相等證明△FCG∽△FBA,利用對應邊成比例列比例式,進行等量代換后化等積式即可;

2)根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半及勾股定理,求出BE的長,再由折疊性質(zhì)求出BF長,結合(1)的結論代入數(shù)據(jù)求解.

解(1)∵四邊形ABCD是平行四邊形,

ABCD,AB=CD,AD=BC

∴∠GCF=B, CGF=BAF,

∴△FCG∽△FBA,

,

.

2)∵,

∴∠AEB=90°,

∵∠B=30°, ,

AE= ,

由勾股定理得,BE=6,

由折疊可得,BF=2BE=12

AD=BC=8,

CF=4

,

,

CG= ,

DG=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為,點MAO中點,的半徑為2

是直角三角形,則點P的坐標為______直接寫出結果

,則BP有怎樣的位置關系?為什么?

若點E的坐標為,那么上是否存在一點P,使最小,如果存在,求出這個最小值,如果不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調(diào)查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)本次抽樣調(diào)查學生的人數(shù)為   

2)補全兩個統(tǒng)計圖,并求出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù).

3)若該校共有840名學生,請根據(jù)抽樣調(diào)查結果估計獲得三等獎的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了掌握八年級數(shù)學考試卷的命題質(zhì)量與難度系數(shù),命題組教師赴外地選取一個水平相當?shù)陌四昙壈嗉夁M行預測,將考試成績分布情況進行處理分析,制成頻數(shù)分布表如下(成績得分均為整數(shù)):

組別

成績分組

頻數(shù)頻率

頻數(shù)

1

2

0.05

2

4

0.10

3

0.2

4

10

0.25

5

6

6

0.15

合計

40

1.00

根據(jù)表中提供的信息解答下列問題:

(1)頻數(shù)分布表中的 , ,

(2)已知全區(qū)八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優(yōu)秀,預計優(yōu)秀的人數(shù)約為 ,72分及以上為及格,預計及格的人數(shù)約為 ,及格的百分比約為 ;

(3)補充完整頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若記表示任意實數(shù)的整數(shù)部分,例如:,,則(其中“+”“依次相間)的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當x1時,yx的增大而增大,正確的是( )

A. ①③B. ②④C. ①②④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線yx2+bx+c的對稱軸為x1,且其頂點在直線y=﹣2x2上.

1)求拋物線的頂點坐標;

2)求拋物線的解析式;

3)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;

4)當﹣1x4時,直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yxxb)﹣y軸相交于A點,與x軸相交于B、C兩點,且點C在點B的右側(cè),設拋物線的頂點為P

1)若點B與點C關于直線x1對稱,求b的值;

2)若OBOA,求△BCP的面積;

3)當﹣1x1時,該拋物線上最高點與最低點縱坐標的差為h,求出hb的關系;若h有最大值或最小值,直接寫出這個最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中有點和某一函數(shù)圖象,過點軸的垂線,交圖象于點,設點,的縱坐標分別為,.如果,那么稱點為圖象的上位點;如果,那么稱點為圖象的圖上點;如果,那么稱點為圖象的下位點.

1)已知拋物線.

在點A(-1,0)B(0,-2)C(2,3)中,是拋物線的上位點的是

如果點是直線的圖上點,且為拋物線的上位點,求點的橫坐標的取值范圍;

2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心軸上,半徑為.如果在圖象和⊙上分別存在點和點F,使得線段EF上同時存在圖象的上位點,圖上點和下位點,求圓心的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案