【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象相交于A,B兩點(diǎn),與x軸,y軸分別交于C,D兩點(diǎn),tan∠DCO=,過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,若點(diǎn)C是OE的中點(diǎn),且點(diǎn)A的橫坐標(biāo)為﹣4.,
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接ED,求△ADE的面積.
【答案】(1)y=﹣x﹣3,y=﹣;(2)S△ADE= 6.
【解析】試題分析:(1)根據(jù)題意求得OE=4,OC=2,Rt△COD中,tan∠DCO=
,OD=3,即可得到A(-4,3),D(0,-3),C(-2,0),運(yùn)用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的解析式;
(2)求得兩個(gè)三角形的面積,然后根據(jù)S△ADE=S△ACE+S△DCE即可求得.
試題解析:
(1)∵AE⊥x軸于點(diǎn)E,點(diǎn)C是OE的中點(diǎn),且點(diǎn)A的橫坐標(biāo)為﹣4,
∴OE=4,OC=2,
∵Rt△COD中,tan∠DCO=,
∴OD=3,
∴A(﹣4,3),
∴D(0,﹣3),C(﹣2,0),
∵直線y=ax+b(a≠0)與x軸、y軸分別交于C、D兩點(diǎn),
∴ ,解得 ,
∴一次函數(shù)的解析式為y=﹣x﹣3,
把點(diǎn)A的坐標(biāo)(﹣4,3)代入,可得
3= ,解得k=﹣12,
∴A(﹣2,3),
∴反比例函數(shù)解析式為y=﹣;
(2)S△ADE=S△ACE+S△DCE=ECAE+ECOD=×2×3+=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:
①△DAG≌△DFG:②BG=2AG;③S△DGF=120;④S△BEF=,其中所有正確結(jié)論有:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雁塔位于唐長(zhǎng)安城安仁坊(今陜西省西安市南郊)薦福寺內(nèi),又稱“薦福寺塔”,建于唐景龍年間,與大雁塔同為唐長(zhǎng)安城保留至今的重要標(biāo)志.小明在學(xué)習(xí)了銳角三角函數(shù)后,想利用所學(xué)知識(shí)測(cè)量“小雁塔”的高度,小明在一棟高9.982米的建筑物底部D處測(cè)得塔頂端A的仰角為45°,接著在建筑物頂端C處測(cè)得塔頂端A的仰角為37.5°.已知AB⊥BD,CD⊥BD,請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“小雁塔”的高AB的長(zhǎng)度(結(jié)果精確到1米)(參考數(shù)據(jù):sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象x經(jīng)過(guò)點(diǎn)A(1,4),B(2,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在y軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜坡AB坡度為1:2.4,長(zhǎng)度為52米,在坡頂B所在的平臺(tái)上有一座高樓EF,已知在A處測(cè)得樓頂F的仰角為60°,在B處測(cè)得樓頂F的仰角為77°,則高樓EF的高度是( 。ň_到米,參考數(shù)據(jù):sin77°≈0.97,tan77°≈4.33,≈1.73)
A. 125米 B. 105米 C. 85米 D. 65米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過(guò)點(diǎn)C作CE⊥AD于點(diǎn)E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長(zhǎng);
(2)如圖2,過(guò)點(diǎn)C作CF⊥CE,且CF=CE,連接FE并延長(zhǎng)交AB于點(diǎn)M,連接BF,求證:AM=BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形AOBC,以O為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(10,0),點(diǎn)E是BC邊上一點(diǎn),把長(zhǎng)方形AOBC沿AE翻折后,C點(diǎn)恰好落在x軸上點(diǎn)F處.
(1)求點(diǎn)E、F的坐標(biāo);
(2)求AF所在直線的函數(shù)關(guān)系式;
(3)在x軸上求一點(diǎn)P,使△PAF成為以AF為腰的等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形置于平面直角坐標(biāo)系中,在軸上,在軸上,點(diǎn)的坐標(biāo)為,對(duì)角線與相交于點(diǎn),是第一象限內(nèi)一點(diǎn).
(1)如圖1,若,,試判斷四邊形的形狀,并說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)使得時(shí),求證:;
(3)在(2)的條件下,如果與恰好相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com