【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF,BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.
【答案】
(1)證明:連接OB
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC
又∵CD⊥OA
∴∠A+∠AED=∠A+∠CEB=90°
∴∠OBA+∠ABC=90°
∴OB⊥BC
∴BC是⊙O的切線
(2)解:連接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴AF=OF,
∵OA=OF,
∴△OAF是等邊三角形,
∴∠AOF=60°
∴∠ABF= ∠AOF=30°
(3)解:連接OF,AF,
∵DA=DO,CD⊥OA,
∴AF=OF=OA,
過點O作OG⊥AB于點G,得到AG=BG,
在Rt△AOG中,sinA= = ,
設(shè)DE=5x,則AE=13x,AD=12x,AO=24x,
∵BE=10,∴AB=10+13x.
則AG= AB=5+ x,
又∵直角△AOG中,sin∠BAO= ,則 = ,
則 =
解得x= ,
∴AO=24x= .
【解析】(1)根據(jù)等邊對等角,得到∠A=∠OBA,∠CEB=∠ABC,又CD⊥OA,由角的和差得到OB⊥BC,根據(jù)切線的判定方法得出BC是⊙O的切線;(2)根據(jù)垂直平分線定理,得到AF=OF,又OA=OF,得到△OAF是等邊三角形,∠AOF=60°,所以∠ABF= ∠AOF=30°;(3)由DA=DO,CD⊥OA,得到AF=OF=OA,過點O作OG⊥AB于點G,得到AG=BG,在Rt△AOG中,sinA= ,由BE=10,得到AG= AB,又直角△AOG中,sin∠BAO= ,則 = ,求出AO的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校跳繩活動月即將開始,其中有一項為跳繩比賽,體育組為了了解七年級學(xué)生的訓(xùn)練情況,隨機抽取了七年級部分學(xué)生進行1分鐘跳繩測試,并將這些學(xué)生的測試成績(即1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為級,90~120范圍內(nèi)的記為級,120~150范圍內(nèi)的記為級,150~180范圍內(nèi)的記為級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中級對應(yīng)的圓心角為,請根據(jù)圖中的信息解答下列問題:
(1)在扇形統(tǒng)計圖中,求級所占百分比;
(2)在這次測試中,求一共抽取學(xué)生的人數(shù),并補全頻數(shù)分布直方圖;
(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計圖中,求級對應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B分別在反比例函數(shù)y= (x>0),y= (x>0)的圖象上且OA⊥OB,則tanB為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是 ,該中位數(shù)的意義是 ;
(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下敘述正確的有( )
①對頂角相等;②同位角相等;③兩直角相等;④鄰補角相等;⑤多邊形的外角和都相等;⑥三角形的中線把原三角形分成面積相等的兩個三角形
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥CD,E為AB、CD間的一點,連接EA、EC.
(1)如圖①,若∠A=20°,∠C=40°,則∠AEC= °.
(2)如圖②,若∠A=x°,∠C=y°,則∠AEC= °.
(3)如圖③,若∠A=α,∠C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡要說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,貴陽市某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△PQR是⊙O的內(nèi)接正三角形,四邊形ABCD是⊙O的內(nèi)接正方形,BC∥QR,則∠AOQ=( )
A.60°
B.65°
C.72°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com