【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(-5,5),(-2,3).
(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)畫出平面直角坐標(biāo)系xOy;
(2)請畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出頂點(diǎn)A1,B1,C1的坐標(biāo)
(3)請?jiān)?/span>x軸上求作一點(diǎn)P,使△PB1C的周長最小.請標(biāo)出點(diǎn)P的位置(保留作圖痕跡,不需說明作圖方法)
【答案】(1)見解析;(2)A1(5,5) B1(3,3) C1(2,3),見解析;(3)見解析。P點(diǎn)坐標(biāo)(, 0)
【解析】
(1)根據(jù)平面直角坐標(biāo)系中點(diǎn)的平移規(guī)律,解決即可.(2)根據(jù)關(guān)于y軸對稱的圖形的對應(yīng)點(diǎn)的坐標(biāo)特征,找出對應(yīng)點(diǎn)A1,B1,C1連線即可.(3)最短路徑問題,找到C1關(guān)于x軸對稱的對應(yīng)點(diǎn)C2,連接C1C2,與x軸的交點(diǎn)即為P點(diǎn).
解:(1)如圖所示
(2)如圖所示
A1(5,5)B1(3,3)C1(2,3)
(3)如圖所示
∵C(-2,3),B2(3,-1),
∴直線CB2的解析式為y=-x+
令y=0,解得x=
∴P點(diǎn)坐標(biāo)(,,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知和都是等腰直角三角形,.
(1)若為上一動點(diǎn)時(如圖1),
①求證:.
②試求線段,,間滿足的數(shù)量關(guān)系.
(2)當(dāng)點(diǎn)在內(nèi)部時(如圖2),延長交于點(diǎn).
①求證:.
②連結(jié),當(dāng)為等邊三角形時,直接寫出與的直角邊長之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時,y>0,其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),點(diǎn)P、Q在DC邊上,且PQ=DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的⊙O中,弦AB長為2.
(1)求點(diǎn)O到AB的距離.
(2)若點(diǎn)C為⊙O上一點(diǎn)(不與點(diǎn)A,B重合),求∠BCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人喜歡選擇自行車作為出行工具小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程米與時間分鐘的關(guān)系如圖,請結(jié)合圖象,解答下列問題:
______,______,______;
若小軍的速度是120米分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
在的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,,將繞點(diǎn)按順時針方向旋轉(zhuǎn)得,連接.
求證:是等邊三角形;
當(dāng)時,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,為外一點(diǎn),,,
(1)求四邊形的面積
(2)若為內(nèi)一點(diǎn),其它條件不變,請畫出圖形并判斷四邊形的面積是否有變化.若有變化請求出四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com