【題目】如圖1,AB、CD是圓O的兩條弦,交點(diǎn)為P.連接AD、BC. OM⊥ AD,ON⊥BC,垂足分別為M、N.連接PM、PN.
圖1 圖2
(1)求證:△ADP ∽△CBP;
(2)當(dāng)AB⊥CD時(shí),探究PMO與
PNO的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)AB⊥CD時(shí),如圖2,AD=8,BC=6, ∠MON=120°,求四邊形PMON的面積.
【答案】(1)證明見(jiàn)解析;(2)PMO=
PNO,理由見(jiàn)解析;(3)S平行四邊形PMON=6
【解析】
(1)利用同弧所對(duì)的圓周角相等即可證明相似,(2)由OM⊥ AD,ON⊥BC得到M、N為AB、CD的中點(diǎn),再由直角三角形斜邊中線等于斜邊一半即可解題,(3)由三角形中位線性質(zhì)得∠QBC=90°,進(jìn)而證明∠QCB=∠PBD,得到四邊形MONP為平行四邊形即可解題.
(1)因?yàn)橥∷鶎?duì)的圓周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.
(2)PMO=
PNO
因?yàn)?/span>OM⊥ AD,ON⊥BC,
所以點(diǎn)M、N為AB、CD的中點(diǎn),
又AB⊥CD,
所以PM=AD,PN=
BC,
所以,∠A=∠APM,∠C=∠CPN,
所以∠AMP=∠CNP,得到PMO與
PNO.
(3)連接CO并延長(zhǎng)交圓O于點(diǎn)Q,連接BD.
因?yàn)?/span>AB⊥CD,AM=AD,CN=
BC,
所以PM=AD,PN=
BC.
由三角形中位線性質(zhì)得,ON=.
因?yàn)?/span>CQ為圓O直徑,所以∠QBC=90°,
則∠Q+∠QCB=90°,
由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,
所以∠QCB=∠PBD,所以BQ=AD,
所以PM=ON.
同理可得,PN=OM.所以四邊形MONP為平行四邊形.
S平行四邊形PMON=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)中,把矩形OABC沿對(duì)角線OB所在的直線折疊,點(diǎn)A落在點(diǎn)D處,OD與BC交于點(diǎn)E.OA、OC的長(zhǎng)是關(guān)于x的一元二次方程x2﹣9x+18=0的兩個(gè)根(OA>OC).
(1)求A、C的坐標(biāo).
(2)直接寫(xiě)出點(diǎn)E的坐標(biāo),并求出過(guò)點(diǎn)A、E的直線函數(shù)關(guān)系式.
(3)點(diǎn)F是x軸上一點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以點(diǎn)O、B、P、F為頂點(diǎn)的四邊形為菱形?若存在請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),連接CD,點(diǎn)O是CD的中點(diǎn),到點(diǎn)O的距離等于OC的所有點(diǎn)組成圖形M,圖形M分別交AC,BC于點(diǎn)E,F兩點(diǎn),過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與圖形M的位置關(guān)系,并說(shuō)明理由;
(2)若AC=3,∠B=30°,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)
是線段
的一個(gè)三等分點(diǎn),以點(diǎn)
為圓心,
為半徑的圓交
于點(diǎn)
,交
于點(diǎn)
,連接
(1)求證:是
的切線;
(2)點(diǎn)為
上的一動(dòng)點(diǎn),連接
.
①當(dāng) 時(shí),四邊形
是菱形;
②當(dāng) 時(shí),四邊形
是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)求被抽查的學(xué)生人數(shù)和m的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有1200名學(xué)生,根據(jù)抽查結(jié)果,估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使用家用燃?xì)庠顭_(kāi)同一壺水所需的燃?xì)饬?/span>(單位:
)與旋鈕的旋轉(zhuǎn)角度
(單位:度)(
)近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_(kāi)同一壺水的旋鈕角度
與燃?xì)饬?/span>
的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_(kāi)一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為,A、B為⊙O上兩點(diǎn),C為⊙O內(nèi)一點(diǎn),AC⊥BC,AC=
,BC=
.
(1)判斷點(diǎn)O、C、B的位置關(guān)系;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角和等于另兩個(gè)內(nèi)角和的一半的四邊形稱為半四邊形,這兩個(gè)角的夾邊稱為對(duì)半線.
(1)如圖1,在對(duì)半四邊形中,
,求
與
的度數(shù)之和;
(2)如圖2,為銳角
的外心,過(guò)點(diǎn)
的直線交
,
于點(diǎn)
,
,
,求證:四邊形
是對(duì)半四邊形;
(3)如圖3,在中,
,
分別是
,
上一點(diǎn),
,
,
為
的中點(diǎn),
,當(dāng)
為對(duì)半四邊形
的對(duì)半線時(shí),求
的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com