精英家教網(wǎng)已知:如圖,⊙O是△ABC的外接圓,AB為⊙O直徑,且PA⊥AB于點(diǎn)A,PO⊥AC于點(diǎn)M
(1)求證:PC是⊙O的切線;
(2)當(dāng)OM=
2
,cosB=
2
4
時(shí),求PC的長.
分析:(1)由題干條件先證明△PAM≌△PMC得到∠PAM=∠PCM,又知OA=OC,得到∠OAC=∠OCA,
(2)首先求出半徑,然后根據(jù)三角形相似解得PC.
解答:精英家教網(wǎng)證明:(1)連接OC,
∵AB為⊙O直徑,且PA⊥AB于點(diǎn)A,PO⊥AC于點(diǎn)M,
∴AM=MC,∵PM=PM,∠PMA=∠PMC,
∴△PAM≌△PMC,
∴∠PAM=∠PCM,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OAP=∠OCP=90°,
∴PC是⊙O的切線;

(2)在Rt△ACB中,
當(dāng)OM=
2
,cosB=
2
4
,
∴BC=2
2
,AB=8,AC=2
14
,
∵Rt△PMC∽R(shí)t△ACB,
MC
BC
=
PC
AB

解得PC=4
7
點(diǎn)評(píng):本題考查了切線的判定,解直角三角形等知識(shí)點(diǎn).要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:如圖,E是△ABC的邊CA延長線上一點(diǎn),F(xiàn)是AB上一點(diǎn),D點(diǎn)在BC的延長線上.試證明∠1<∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點(diǎn),AC為半圓O′的直徑,BD切半圓O′于點(diǎn)D,CE⊥AB交半圓O于點(diǎn)F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點(diǎn),PC切⊙O于點(diǎn)C,割線PO交⊙O于點(diǎn)B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點(diǎn)M在⊙O的下半圈上運(yùn)動(dòng)(不與A、B重合),求當(dāng)△ABM的面積最大時(shí),AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,P是∠AOB的角平分線OC上一點(diǎn).PE⊥OA于E.以P點(diǎn)為圓心,PE長為半徑作⊙P.求證:⊙P與OB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案