【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.已知:AB=24cmCD=8cm

1)求作此殘片所在的圓(不寫作法,保留作圖痕跡).

2)求殘片所在圓的面積.

【答案】(1)見解析;(2) 169πcm.

【解析】

1)由垂徑定理知,垂直于弦的直徑是弦的中垂線,故作AC,BC的中垂線交于點(diǎn)O,則點(diǎn)O是弧ACB所在圓的圓心;

2)在RtOAD中,由勾股定理可求得半徑OA的長,由圓的面積公式進(jìn)行計(jì)算即可.

解:(1)作弦AC的垂直平分線與弦AB的垂直平分線交于O點(diǎn),以O為圓心OA長為半徑作圓O就是此殘片所在的圓,如圖.

2)連接OA,設(shè)OAx,AD12cm,OD=(x8cm,

則根據(jù)勾股定理列方程:

x2122+(x82,

解得:x13

即:圓的半徑為13cm

所以圓的面積為:×132169cm2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,DE是⊙O的直徑,AB是⊙O的弦,AB的中點(diǎn)C在直徑DE上.已知AB=8cmCD=2cm

1)求⊙O的面積;

2)連接AE,過圓心OAE作垂線,垂足為F,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)E為AD中點(diǎn),點(diǎn)F為BC邊上任一點(diǎn),過點(diǎn)F分別作EB,EC的垂線,垂足分別為點(diǎn)G,H,則FG+FH為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BCD,則陰影部分面積為(結(jié)果保留π)( )

A. 16 B. 24-4π C. 32-4π D. 32-8π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2,

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點(diǎn)的坐標(biāo)為(2,1).直線OM是一次函數(shù)y=x的圖象.將直線OM沿x軸正方向平行移動.

1)填空:直線OMx軸所夾的銳角度數(shù)為 °

2)求出運(yùn)動過程中⊙A與直線OM相切時(shí)的直線OM的函數(shù)關(guān)系式;(可直接用(1)中的結(jié)論)

3)運(yùn)動過程中,當(dāng)⊙A與直線OM相交所得的弦對的圓心角為90°時(shí),直線OM的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動直線l從與BM重合的位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過點(diǎn)EEGBCG,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,在九年級隨機(jī)抽取了一部分學(xué)生 的期末數(shù)學(xué)成績?yōu)闃颖,分?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答以下 問題.

(1)這次隨機(jī)抽取的學(xué)生共有多少人?

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)這個(gè)學(xué)校九年級共有學(xué)生 1200 人,若分?jǐn)?shù)為 80 分(含 80 分)以上為優(yōu)秀,請估 計(jì)這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對角線互相垂直的四邊形叫做垂美四邊形.

1)概念理解:如圖2,在四邊形ABCD中,ABADCBCD,問四邊形ABCD是垂美四邊形嗎?請說明理由;

2)性質(zhì)探究:如圖1,四邊形ABCD對角線AC、BD交于點(diǎn)OACBD.試證明:AB2+CD2AD2+BC2;

3)解決問題:如圖3,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)CEBG、GE.已知AC4AB5,求GE的長.

查看答案和解析>>

同步練習(xí)冊答案