如圖,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB.求證:FD∥BC.

【答案】分析:由AD=AB,∠1=∠2,AF為公共邊,利用SAS可得出三角形AFD與三角形AFB全等,利用全等三角形的對(duì)應(yīng)角相等得到∠ADF=∠ABE,再利用同角的余角相等得到一對(duì)同位角相等,利用同位角相等兩直線平行即可得出FD與BC平行,得證.
解答:證明:在△ADF和△ABF中,

∴△ADF≌△ABF(SAS),
∴∠ADF=∠ABE,
∵∠C+∠BAC=90°,∠ABE+∠BAC=90°,
∴∠C=∠ABE=∠ADF,
∴DF∥BC.
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),以及平行線的判定,熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB=BC=CA=AD,AH⊥CD于H,CP⊥BC,CP交AH于P.求證:△ABC的面積S=
3
4
AP•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,AB=BC=CD,且∠A=15°,則∠ECD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,AB=BC=CD=1,則圖中所有線段長(zhǎng)度之和為
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB=BC=AC=AD,那么∠BDC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,則線段AE的長(zhǎng)為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案